Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Medchemcomm ; 8(7): 1421-1434, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-30108853

ABSTRACT

A series of inhibitors of NF-κB based on ursolic acid (UA) derivatives containing functionalized aniline or amide side chains were synthesized and evaluated for inhibition of NF-κB as well as their antitumor effects. These compounds exhibited significant inhibition activity toward NF-κB with IC50 values at micromolar concentrations in the NCI-H460 lung adenocarcinoma cell line. A docking study of the most active compound 5Y8 revealed key interactions between 5Y8 and the active site of NF-κB in which the functionalized amide moiety at the C-28 position and an ester group at the C-3 position were important for improving the activity. In particular, compound 5Y8 appeared to be the most potent compound against the NCI-H460 cell line, and displayed similar efficiency in drug-sensitive versus drug-resistant cancer cell lines, at least partly, by blocking the NF-κB signaling pathway and inducing apoptosis. Mechanistically, compound 5Y8 might trigger the apoptotic signaling pathway. Thus, the rational design of UA derivatives with functionalized aniline or amide side chains offers significant potential for the discovery of a new class of NF-κB inhibitors with the ability to induce apoptosis and reverse multidrug resistance in the NCI-H460 lung adenocarcinoma cell line.

2.
Anticancer Agents Med Chem ; 17(4): 576-589, 2017.
Article in English | MEDLINE | ID: mdl-27671299

ABSTRACT

BACKGROUND: Cancer is one of the most serious clinical problems worldwide, and considerable efforts have been devoted to discovering therapeutic agents with novel modes of action. Natural and synthetic coumarin derivatives have attracted intense research interest due to their diverse structural features and remarkable array of biological properties. OBJECTIVE: In the present study, we synthesized a series of 4-MU derivatives containing urea-piperazine and thioureapiperazine moieties and evaluated their antitumor activities to find efficacy antitumor drugs. METHOD: Cell proliferation, apoptosis, cell cycle, the generation of reactive oxygen species and calcium were measured using MTT assay and flow cytometry, respectively. The expression of apoptosis- and proliferation-related proteins was determined by western blotting. The effect of 4l on apoptosis-related mRNA expression in NCI-H460 cells was detected by RT-PCR. RESULTS: Most of the target compounds exhibited potential anticancer activities against tested cancer cells but had low cytotoxicity to normal cells. Compound 4l inhibited the growth and proliferation of NCI-H460 cells and resulted in apoptosis. Successive studies conducted with 4l in NCI-H460 cells demonstrated that this compound induced the intracellular reactive oxygen species generation and calcium overload, suppressed nuclear factor-κB (NF-κB) activity and regulated anti- and pro-apoptotic proteins. In addition, compound 4l effectively arrested NCI-H460 cells in G2 phase and altered the cell cycle regulatory proteins especially cyclin B1. CONCLUSION: Compound 4l exerts significant anticancer effects on NCI-H460 cells in vitro through targeting of mitochondria-dependent apoptotic pathway. These results indicate that the strategy for rational design of 4-MU derivatives may identify potential anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Hymecromone/analogs & derivatives , Hymecromone/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Calcium/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hymecromone/chemical synthesis , Hymecromone/chemistry , Molecular Structure , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
3.
Eur J Med Chem ; 95: 435-52, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25841199

ABSTRACT

A series of novel ursolic acid (UA) derivatives modified at the C-3 and the C-28 positions were designed and synthesized in an attempt to develop potential antitumor agents. The in vitro cytotoxicity were evaluated against five cancer cell lines (MGC-803, HCT-116, T24, HepG2 and A549 cell lines) and a normal cell (HL-7702) by MTT assay. The screening results indicated that some of these target compounds displayed moderate to high levels of antiproliferative activities compared with ursolic acid and 5-fluorouracil (5-FU), and exhibited much lower cytotoxicity than 5-FU, indicating that the targeted compounds had selective and significant effect on the cell lines. The induction of apoptosis and affects on the cell cycle distribution of compound 6r were investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which revealed that the antitumor activity of 6r was possibly achieved through the induction of cell apoptosis by G1 cell-cycle arrest. Western blot and qRT-PCR (quantitative real-time PCR) experiments demonstrated that compound 6r may induce apoptosis through both of intrinsic and extrinsic apoptosis pathway.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Drug Design , Triterpenes/chemical synthesis , Triterpenes/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Drug Screening Assays, Antitumor , Humans , Intracellular Space/drug effects , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Triterpenes/chemistry , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...