Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 264(Pt 2): 130672, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462095

ABSTRACT

The long-term application of plant essential oils in food preservation coatings is limited by their poor water solubility and high volatility, despite their recognized synergistic antimicrobial effects in postharvest fruit preservation. To overcome these limitations, a Pickering emulsion loaded with thyme essential oil (TEO) was developed by utilizing hydrogen bonding and electrostatic interactions to induce cross-linking of chitosan particles. This novel emulsion was subsequently applied in the postharvest storage of strawberries. The shear-thinning behavior (flow index <1) and elastic gel-like characteristics of the emulsion made it highly suitable for spray application. Regarding TEO release, the headspace concentration of TEO increased from 0.21 g/L for pure TEO to 1.86 g/L after two instances of gas release due to the stabilizing effect of the chitosan particles at the oil-water interface. Notably, no phase separation was observed during the 10-day storage of the emulsion. Consequently, the emulsion was successfully employed for the postharvest storage of strawberries, effectively preventing undesirable phenomena such as weight loss, a decrease in firmness, an increase in pH, and microbial growth. In conclusion, the developed Pickering emulsion coating exhibits significant potential for fruit preservation applications, particularly for extending the shelf life of strawberries.


Subject(s)
Chitosan , Fragaria , Oils, Volatile , Plant Oils , Thymol , Thymus Plant , Chitosan/pharmacology , Emulsions , Food Preservation , Oils, Volatile/pharmacology , Water
2.
Food Res Int ; 177: 113835, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225112

ABSTRACT

The work aimed to develop the multi-protein mixture of egg yolk as natural particles to stabilize high internal phase Pickering emulsions (HIPPEs) to improve the bioaccessibility of ß-carotene in the elderly. The results showed that the depletion attraction drove the adsorption of egg yolk protein particles at the oil-water interface and the formation of osmotic droplet clusters due to the attachment of particle-coated droplets in the dispersed phase, leading to kinetic blocking and stable gelation of HIPPEs. Rheological measurements showed that HIPPEs had shear thinning, low shear stress, viscoelastic properties, and structural recovery properties, which facilitated easy consumption for the elderly. The stability of HIPPEs was verified by ionic and centrifugal stability tests, demonstrating their potential for application to complex gastric environments. HIPPEs have been applied to the International Dysphagia Dietary Standardization Initiative (IDDSI) test and simulated in vitro digestion in older adults, demonstrating their safe swallowability and high ß-carotene bioaccessibility. Our findings suggest solutions for food practitioners facing the aging problem and provide new insights for preparing age-friendly foods.


Subject(s)
Carboxymethylcellulose Sodium , beta Carotene , Humans , Aged , Emulsions/chemistry , beta Carotene/chemistry , Egg Yolk/metabolism , Egg Proteins
3.
Int J Biol Macromol ; 255: 128211, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989429

ABSTRACT

A two-step method for preparing smart labels that can monitor food freshness through color change is presented. The conventional casting method for such labels is not cost-effective, as it uses organic solvents and requires additional cutting processes. Our method is more eco-friendly and customizable, as it uses water as the sole solvent and 3D printing as the fabrication technique. First, curcumin was encapsulated with soy protein isolate (SPI) by a pH-driven method involving hydrogen bonding and hydrophobic interactions. Subsequently, the SPI-curcumin complex was blended with gelatin to create a printable ink. The ink has suitable rheological properties for extrusion, with a yield stress of 400-600 Pa and a viscosity of 122.93-142.82 Pa·s at the optimal printing temperature. The complex modulus of the ink increases to above 2 × 103 Pa when cooled to 25 °C, indicating rapid gel formation. The application of these smart labels to minced meat demonstrated their ability to reflect its freshness by transitioning from yellow to red. Furthermore, the printability and mechanical properties of the labels can be adjusted by changing the glycerol/water ratio. This innovative approach is a promising solution for producing environmentally friendly and customizable smart labels for food freshness monitoring.


Subject(s)
Curcumin , Curcumin/chemistry , Soybean Proteins/chemistry , Printing, Three-Dimensional , Gelatin/chemistry , Water
4.
Food Chem ; 414: 135718, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36827783

ABSTRACT

Although protein-polysaccharide complexes have shown tremendous potential in stabilizing high internal phase Pickering emulsions (HIPPEs), it is unclear whether coacervates have the same potential to be used as effective Pickering stabilizers. In this study, HIPPEs were prepared by ovalbumin (OVA)-pectin (PE) coacervates during the transition from coacervates to complexes. The results showed that enhanced OVA-PE interactions significantly affected the wettability and surface-tension reduction ability of the OVA-PE coacervates. At pH 2, the coacervate-stabilized HIPPEs exhibited smaller oil droplet sizes (21.3±2.3 µm), tighter droplet packing, and finer solid-like structures through the bridging of droplets and the generation of stronger gel-like network structures to prevent coalescence and lipid oxidation. The gastrointestinal digestion results proved that the OVA-PE coacervates promoted lipid hydrolysis and improved the bioaccessibility (from 19.7±0.7% to 36.5±2%) of curcumin-loaded HIPPEs. Our work provides new ideas for the development of biopolymer particles as effective Pickering stabilizers in the food industry.


Subject(s)
Food , Pectins , Emulsions/chemistry , Particle Size , Lipids/chemistry , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL
...