Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Autoimmunity ; 57(1): 2312927, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38321980

ABSTRACT

MicroRNA (miRNA) plays a regulatory role in periodontitis. This study aimed to explore whether miR-29a could affect lipopolysaccharides (LPSs)-induced injury in human gingival fibroblasts (HGFs) through the competitive endogenous RNAs (ceRNA) mechanism. Periodontal ligament (PDL) tissues and HGFs were derived from patients with periodontitis and healthy volunteers. Periodontitis cell model was established by treating HGFs with LPS. Expression levels of circ_0036490, miR-29a, and DKK1 were evaluated by the reverse transcription quantitative real-time PCR (RT-qPCR) method. Western blotting assay was performed to assess protein expression levels of pyroptosis-related proteins and Wnt signalling related proteins. Cell viability was evaluated by cell counting kit-8 (CCK-8) assay. Concentration of lactate dehydrogenase (LDH), interleukin (IL)-1ß, and IL-18 were determined by Enzyme-linked immunosorbent assay (ELISA). Pyroptosis rate were determined by flow cytometry assay to evaluate pyroptosis. The interaction between miR-29a and circ_0036490 or DKK1 was verified by dual-luciferase reporter and RNA pull-down assays. MiR-29a expression was lower in PDL tissues of patients with periodontitis than that in healthy group; likewise, miR-29a was also downregulated in LPS-treated HGFs. Overexpression of miR-29a increased cell viability and decreased pyroptosis of HGFs induced by LPS while inhibition of miR-29a exerted the opposite role. MiR-29a binds to circ_0036490 and elevation of circ_0036490 contributed to dysfuntion of LPS-treated HGFs and reversed the protection function of elevated miR-29a. In addition, miR-29a targets DKK1. Overexpression of DKK1 abrogated the effects of overexpressed miR-29a on cell vaibility, pyroptosis, and protein levels of Wnt signalling pathway of LPS-treated HGFs. Circ_0036490 and DKK1 competitively bind miR-29a to promote LPS-induced HGF injury in vitro. Wnt pathway inactivated by LPS was activated by miR-29a. Thence, miR-29a may be a promising target for periodontitis.


Subject(s)
MicroRNAs , Periodontitis , Humans , Apoptosis , Fibroblasts , Intercellular Signaling Peptides and Proteins , Lipopolysaccharides , Periodontium , RNA, Circular/genetics
2.
Arch Oral Biol ; 143: 105542, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36108431

ABSTRACT

OBJECTIVE: This study intended to evaluate the involvement of genetic factors in the etiology of non-syndromic multiple supernumerary teeth. DESIGN: We filtered the single nucleotide polymorphisms (SNPs) of the proband and his mother with similar phenotypes through whole-genome sequencing (WGS). By integrating multiple databases related to human genome mutations and disease information for mutation annotation, we excluded the SNPs of people without supernumerary teeth. Subsequently, the bioinformatics analysis tools (Sorting Intolerant From Tolerant (SIFT) < 0.05, Polymorphism Phenotyping (PolyPhen) > 0.90) were used to screen out the most correlated SNPs of the disease, besides, Gene Ontology (GO) analysis (P<0.05, FDR<0.05) and Sanger sequencing was applied to further verify the candidate pathogenic mutation point. RESULTS: A novel heterozygous variant in fer-1 like family member 6 (FER1L6) gene likely denoted pathogenicity in non-syndromic familial multiple supernumerary teeth. We identified a cohort of 3499 non-synonymous SNPs (nsSNPs), and only 142 nsSNPs with the score of SIFT < 0.05 and PolyPhen > 0.90 were retained. Then we got 54 nsSNPs from 31 candidate genes through GO analysis. Sanger sequencing revealed a missense variant in exon 31 of the FER1L6 gene, causing a transition from guanine to adenine in position 1447 of protein kinase C conserved region 2. CONCLUSIONS: We identified a novel heterozygous chromosome 8q24.13 mutation of FER1L6, which was a new mutation site identified in non-syndromic familial multiple supernumerary teeth through genetic analysis of a Chinese family.


Subject(s)
Mutation, Missense , Tooth, Supernumerary , Adenine , Guanine , Humans , Mutation , Polymorphism, Single Nucleotide , Protein Kinase C , Tooth, Supernumerary/genetics
3.
Cell Prolif ; 53(2): e12735, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31797479

ABSTRACT

Bone metabolism is a lifelong process that includes bone formation and resorption. Osteoblasts and osteoclasts are the predominant cell types associated with bone metabolism, which is facilitated by other cells such as bone marrow mesenchymal stem cells (BMMSCs), osteocytes and chondrocytes. As an important component in our daily diet, fatty acids are mainly categorized as long-chain fatty acids including polyunsaturated fatty acids (LCPUFAs), monounsaturated fatty acids (LCMUFAs), saturated fatty acids (LCSFAs), medium-/short-chain fatty acids (MCFAs/SCFAs) as well as their metabolites. Fatty acids are closely associated with bone metabolism and associated bone disorders. In this review, we summarized the important roles and potential therapeutic implications of fatty acids in multiple bone disorders, reviewed the diverse range of critical effects displayed by fatty acids on bone metabolism, and elucidated their modulatory roles and mechanisms on specific bone cell types. The evidence supporting close implications of fatty acids in bone metabolism and disorders suggests fatty acids as potential therapeutic and nutritional agents for the treatment and prevention of metabolic bone diseases.


Subject(s)
Bone and Bones/metabolism , Fatty Acids/metabolism , Animals , Energy Metabolism/physiology , Humans , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...