Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(3): 4269-4279, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38097840

ABSTRACT

Microbiologically influenced corrosion (MIC) is one of the reasons leading to the service failure of pipelines buried in the soil. In this work, the effect of sulfate-reducing bacteria (SRB) on the corrosion behavior of Q235 carbon steel in groundwater was investigated by electrochemical methods, surface analysis, and biological analysis. The results show that SRB utilizes iron as electron donor to sustain the vital activities of organic carbon-starved groundwater during the 14-day experimental period. The microbial community composition analysis at the genus level demonstrate that the diversity and richness decrease after corrosion, and the dominant SRB species has changed from Desulfovibrio to Desulfosporosinus. Moreover, the impedance of the carbon steel in the presence of biofilm was 1 order of magnitude higher than that of other periods in the electrochemical test, indicating that the biofilm and formed ferrous sulfide layer impeded the occurrence of corrosion. Although the 3D topography indicated that the surface of carbon steel was more uneven and pits were increased in the presence of SRB, the average weight loss (0.0396 ± 0.0050 g) was much higher than that without SRB (0.0139 ± 0.0007 g). These results implied that the growth of SRB makes the corrosion process of Q235 carbon steel more complicated.


Subject(s)
Desulfovibrio , Groundwater , Microbiota , Steel/chemistry , Corrosion , Carbon/pharmacology , Biofilms , Sulfates/pharmacology
2.
Water Sci Technol ; 87(1): 228-238, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36640034

ABSTRACT

Bioaugmentation is an effective strategy used to speed up the bioremediation of marine oil spills. In the present study, a highly efficient petroleum degrading bacterium (Pseudomonas aeruginosa ZS1) was applied to the bioremediation of simulated crude oil pollution in different sampling sites in the South China Sea. The metabolic pathways of ZS1 to degrade crude oil, the temporal dynamics of the microbial community response to crude oil contamination, and the biofortification process were investigated. The results showed that the abundance and diversity of the microbial community decreased sharply after the occurrence of crude oil contamination. The best degradation rate of crude oil, which was achieved in the samples from the sampling site N3 after the addition of ZS1 bacteria, was 50.94% at 50 days. C13 alkanes were totally oxidized by ZS1 in the 50 days. The degradation rate of solid n-alkanes (C18-C20) was about 70%. Based on the whole genome sequencing and the metabolites analysis of ZS1, we found that ZS1 degraded n-alkanes through the terminal oxidation pathway and aromatic compounds through the catechol pathway. This study provides data support for further research on biodegradation pathways of crude oil and contributes to the subsequent development of more reasonable bioremediation strategies.


Subject(s)
Microbiota , Petroleum Pollution , Petroleum , Biodegradation, Environmental , Petroleum Pollution/analysis , Alkanes/metabolism , Petroleum/analysis , Bacteria/genetics , Bacteria/metabolism , Metabolic Networks and Pathways , Hydrocarbons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...