Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Appl Opt ; 61(10): 2818-2824, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35471357

ABSTRACT

A compact fiber-optic Fabry-Perot (F-P) cavity for a sensor is designed based on a sandwich structure, adopting direct bonding of quartz glass. The reflective F-P cavity is manufactured by a fiber optic with a quartz glass ferrule and the sandwich structure with an air cavity, which is achieved by direct bonding of quartz glass. This fabrication process includes plasma surface activation, hydrophilic pre-bonding, high-temperature annealing, and dicing. The cross section of the bonding interface tested by a scanning electron microscope indicates that the sandwich structure is well bonded, and the air cavity is not deformed. Experiments show that the quality factor of the F-P cavity is 2711. Tensile strength testing shows that the bond strength exceeds 35 MPa. The advantage of direct bonding of quartz glass is that high consistency and mass production of the cavity can be realized. Moreover, the cavity is free of problems caused by the mismatch of thermal expansion coefficients between different materials. Therefore, the F-P cavity can be made into a sensor, which is promising in detecting air pressure, acoustic and high temperature.

2.
Micromachines (Basel) ; 13(2)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35208288

ABSTRACT

High-performance medical acoustic sensors are essential in medical equipment and diagnosis. Commercially available medical acoustic sensors are capacitive and piezoelectric types. When they are used to detect heart sound signals, there is attenuation and distortion due to the sound transmission between different media. This paper proposes a new bionic acoustic sensor based on the fish ear structure. Through theoretical analysis and finite element simulation, the optimal parameters of the sensitive structure are determined. The sensor is fabricated using microelectromechanical systems (MEMS) technology, and is encapsulated in castor oil, which has an acoustic impedance close to the human body. An electroacoustic test platform is built to test the performance of the sensor. The results showed that the MEMS bionic sensor operated with a bandwidth of 20-2k Hz. Its linearity and frequency responses were better than the electret microphone. In addition, the sensor was tested for heart sound collection application to verify its effectiveness. The proposed sensor can be effectively used in clinical auscultation and has a high SNR.

3.
Entropy (Basel) ; 22(5)2020 May 22.
Article in English | MEDLINE | ID: mdl-33286357

ABSTRACT

The symmetric positive definite (SPD) matrix has attracted much attention in classification problems because of its remarkable performance, which is due to the underlying structure of the Riemannian manifold with non-negative curvature as well as the use of non-linear geometric metrics, which have a stronger ability to distinguish SPD matrices and reduce information loss compared to the Euclidean metric. In this paper, we propose a spectral-based SPD matrix signal detection method with deep learning that uses time-frequency spectra to construct SPD matrices and then exploits a deep SPD matrix learning network to detect the target signal. Using this approach, the signal detection problem is transformed into a binary classification problem on a manifold to judge whether the input sample has target signal or not. Two matrix models are applied, namely, an SPD matrix based on spectral covariance and an SPD matrix based on spectral transformation. A simulated-signal dataset and a semi-physical simulated-signal dataset are used to demonstrate that the spectral-based SPD matrix signal detection method with deep learning has a gain of 1.7-3.3 dB under appropriate conditions. The results show that our proposed method achieves better detection performances than its state-of-the-art spectral counterparts that use convolutional neural networks.

4.
Entropy (Basel) ; 22(9)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-33286683

ABSTRACT

In this paper, a novel signal detector based on matrix information geometric dimensionality reduction (DR) is proposed, which is inspired from spectrogram processing. By short time Fourier transform (STFT), the received data are represented as a 2-D high-precision spectrogram, from which we can well judge whether the signal exists. Previous similar studies extracted insufficient information from these spectrograms, resulting in unsatisfactory detection performance especially for complex signal detection task at low signal-noise-ratio (SNR). To this end, we use a global descriptor to extract abundant features, then exploit the advantages of matrix information geometry technique by constructing the high-dimensional features as symmetric positive definite (SPD) matrices. In this case, our task for signal detection becomes a binary classification problem lying on an SPD manifold. Promoting the discrimination of heterogeneous samples through information geometric DR technique that is dedicated to SPD manifold, our proposed detector achieves satisfactory signal detection performance in low SNR cases using the K distribution simulation and the real-life sea clutter data, which can be widely used in the field of signal detection.

5.
Entropy (Basel) ; 22(9)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-33286718

ABSTRACT

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5-2 dB on simulated data sets and semi-physical simulated data sets.

6.
Sensors (Basel) ; 18(5)2018 May 16.
Article in English | MEDLINE | ID: mdl-29772676

ABSTRACT

For synthetic aperture radars, it is difficult to achieve forward-looking and staring imaging with high resolution. Fortunately, terahertz coded-aperture imaging (TCAI), an advanced radar imaging technology, can solve this problem by producing various irradiation patterns with coded apertures. However, three-dimensional (3D) TCAI has two problems, including a heavy computational burden caused by a large-scale reference signal matrix, and poor resolving ability at low signal-to-noise ratios (SNRs). This paper proposes a 3D imaging method based on geometric measures (GMs), which can reduce the computational burden and achieve high-resolution imaging for low SNR targets. At extremely low SNRs, it is difficult to detect the range cells containing scattering information with an ordinary range profile. However, this difficulty can be overcome through GMs, which can enhance the useful signal and restrain the noise. By extracting useful data from the range profile, target information in different imaging cells can be simultaneously reconstructed. Thus, the computational complexity is distinctly reduced when the 3D image is obtained by combining reconstructed 2D imaging results. Based on the conventional TCAI (C-TCAI) model, we deduce and build a GM-based TCAI (GM-TCAI) model. Compared with C-TCAI, the experimental results demonstrate that GM-TCAI achieves a more impressive performance with regards to imaging ability and efficiency. Furthermore, GM-TCAI can be widely applied in close-range imaging fields, for instance, medical diagnosis, nondestructive detection, security screening, etc.

7.
Entropy (Basel) ; 20(4)2018 Mar 23.
Article in English | MEDLINE | ID: mdl-33265310

ABSTRACT

This paper proposes a class of covariance estimators based on information divergences in heterogeneous environments. In particular, the problem of covariance estimation is reformulated on the Riemannian manifold of Hermitian positive-definite (HPD) matrices. The means associated with information divergences are derived and used as the estimators. Without resorting to the complete knowledge of the probability distribution of the sample data, the geometry of the Riemannian manifold of HPD matrices is considered in mean estimators. Moreover, the robustness of mean estimators is analyzed using the influence function. Simulation results indicate the robustness and superiority of an adaptive normalized matched filter with our proposed estimators compared with the existing alternatives.

8.
Entropy (Basel) ; 20(4)2018 Apr 06.
Article in English | MEDLINE | ID: mdl-33265347

ABSTRACT

This paper proposes a radar target detection algorithm based on information geometry. In particular, the correlation of sample data is modeled as a Hermitian positive-definite (HPD) matrix. Moreover, a class of total Jensen-Bregman divergences, including the total Jensen square loss, the total Jensen log-determinant divergence, and the total Jensen von Neumann divergence, are proposed to be used as the distance-like function on the space of HPD matrices. On basis of these divergences, definitions of their corresponding median matrices are given. Finally, a decision rule of target detection is made by comparing the total Jensen-Bregman divergence between the median of reference cells and the matrix of cell under test with a given threshold. The performance analysis on both simulated and real radar data confirm the superiority of the proposed detection method over its conventional counterparts and existing ones.

9.
Entropy (Basel) ; 20(4)2018 Apr 08.
Article in English | MEDLINE | ID: mdl-33265349

ABSTRACT

This paper presents a covariance matrix estimation method based on information geometry in a heterogeneous clutter. In particular, the problem of covariance estimation is reformulated as the computation of geometric median for covariance matrices estimated by the secondary data set. A new class of total Bregman divergence is presented on the Riemanian manifold of Hermitian positive-definite (HPD) matrix, which is the foundation of information geometry. On the basis of this divergence, total Bregman divergence medians are derived instead of the sample covariance matrix (SCM) of the secondary data. Unlike the SCM, resorting to the knowledge of statistical characteristics of the sample data, the geometric structure of matrix space is considered in our proposed estimators, and then the performance can be improved in a heterogeneous clutter. At the analysis stage, numerical results are given to validate the detection performance of an adaptive normalized matched filter with our estimator compared with existing alternatives.

10.
Entropy (Basel) ; 21(1)2018 Dec 23.
Article in English | MEDLINE | ID: mdl-33266726

ABSTRACT

Complex Electromagnetic Space (CEMS), which consists of physical space and the complex electromagnetic environment, plays an essential role in our daily life for supporting remote communication, wireless network, wide-range broadcast, etc. In CEMS, the electromagnetic activities might work differently from the ideal situation; the typical case is that undesired signal would disturb the echo of objects and overlap into it resulting in the mismatch of matched filter and the reduction of the probability of detection. The lacking mathematical description of CEMS resulting from the complexity of electromagnetic environment leads to the inappropriate design of detection method. Therefore, a mathematical model of CEMS is desired for integrating the electromagnetic signal in CEMS as a whole and considering the issues in CEMS accurately. This paper puts forward a geometric model of CEMS based on vector bundle, which is an abstract concept in differential geometry and proposes a geometric detector for change detection in CEMS under the geometric model. In the simulation, the proposed geometric detector was compared with energy detector and matched filter in two scenes: passive detection case and active detection case. The results show the proposed geometric detector is better than both energy detector and matched filter with 4∼5 dB improvements of SNR (signal-to-noise ratio) in two scenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...