Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 7(15): 12680-12689, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35474791

ABSTRACT

High tensile strength UV-cured transparent materials are highly desired in optical devices. In this paper, high tensile strength UV-cured transparent castor oil-based polyurethane acrylates (PUAs) with a very high transmittance over 95% (400-800 nm) were prepared from UV-curable castor oil-based polyurethane acrylates (CO-PUAs) and mercapto silicone-containing hyperbranched polymers (HBPSHs) under UV irradiation. The tensile strengths of UV-cured transparent castor oil-based PUAs can reach 12.49 MPa, which is obviously higher than that of UV-cured CO-PUAs reported previously (0.7-10.20 MPa). The chemical structure of HBPSHs will play an important role in the mechanical performance of UV-cured silicone-modified materials, and it can be concluded that the more rigid the units of α,ß-dihydroxyl derivatives used in the fabrication of HBPSHs are, the higher the mechanical strength and pencil hardness of the UV-cured materials will be.

2.
ACS Omega ; 6(4): 2890-2898, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33553907

ABSTRACT

Flexibility and mechanical performance are essential for transparent silicone materials applied in some optical and electronic devices; however, the tensile strength of transparent silicone materials is fairly low. To overcome this problem, a kind of UV-cured transparent flexible silicone material with quite a high tensile strength and elongation at break was developed through UV-initiated thiol-ene reaction by hyperbranched silicon-containing polymers (HBPs) with a thiol substitute and acrylate-terminated polyurethanes. Unexpectedly, it is found that both the tensile strength and elongation at break of the transparent silicone materials are extraordinarily high, which can reach 3.40 MPa and 270.0%, respectively. The UV-cured materials have good UV resistance ability because their transmittance is still as high as 93.4% (800 nm) even when aged for 40 min in a UV chamber of 10.6 mW cm-2. They exhibit outstanding adhesion to substrates, and the adhesion to a glass slide, wood, and a tin plate is grade 1. The promising results encourage us to further improve the mechanical performance of flexible transparent silicone materials by effective chemical modification strategies with HBPs. An attempt was made to apply the UV-cured materials in a Gel-Pak box and it could be proved that the UV-cured materials may be one of the good candidates for use as packaging or protecting materials of optical or electronics devices such as the Gel-Pak product.

3.
Polymers (Basel) ; 12(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339280

ABSTRACT

A kind of hyperbranched silicone containing macrophotoinitiators (HBSMIs) were synthesized from 2-hydroxy-2-methyl-1-phenyl propanone (HMPP) and the UV-curing behaviors of HBSMIs were investigated in UV-cured transparent polyurethane-acrylate (PUA) coatings. HBSMIs show higher UV-initiating efficiency than HMPP. The migration of HBSMIs from the UV-cured coatings can be as low as 1.7-6.0 wt%, which is obviously lower than the migration of HMPP. There is a remarkable improvement of the tensile strength of the UV-cured materials initiated by HBSMI in comparison to that of the materials prepared with the same PUA initiated by HMPP. Especially for the UV-cured materials prepared from PUA with 20 wt% 1,1,1-tris(hydroxymethyl)propane (TMP), the tensile strength and the strain at break increased from 6.81 MPa to 12.14 MPa and from 43.0% to 71.9%, respectively. The fraction of improvement for the tensile strength and the strain at break is as high as 78.9% and 67.2%, respectively. The coatings prepared with HBSMI also have better UV resistance ability than those coatings prepared with HMPP because they turn slightly yellow when they are aged by UV for about 15 min while the coating prepared with 4 wt% of HMPP will turn yellow only aged by UV for 2 min. These results suggest that preparation hyperbranched silicone containing macrophotoinitiators will be one of the good strategies to improve the curing efficiency of the UV-curing system, reduce the migration of UV initiator from cured material, improve the mechanical and UV resistance performance of UV-cured materials.

4.
ACS Omega ; 5(45): 29513-29519, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33225182

ABSTRACT

Highly transparent flexible silicone elastomers are useful for certain stretchable electronics and various types of smart devices. Polyester-polysiloxane hyperbranched block copolymers are synthesized by ring-opening polymerization of octamethylcyclotetrasiloxane initiated by macromolecular lithium alkoxide. Treatment of these copolymers with tetraethoxysilane and dibutylin dilaurate at room temperature gives the corresponding transparent elastic materials. The transparency of the materials can reach 90% (700-800 nm), and the starting thermal decomposition temperatures of the materials are higher than 330 °C. Very interestingly, though the highest tensile strength of the material prepared is about 0.48 MPa, the elongation at break can reach 778-815%. The results will inspire us to develop highly transparent flexible silicone materials by designing copolymers of silicone materials and hyperbranched polymers.

5.
Org Lett ; 13(3): 478-81, 2011 Feb 04.
Article in English | MEDLINE | ID: mdl-21182265

ABSTRACT

An interesting sequential Sonogashira coupling/alkynyl imine-allenyl imine isomerization/aza-Diels-Alder/elimination-aromatization reaction, providing a facile synthesis of substituted 2-azaanthracenes from 1,6-diynes and imidoyl chlorides, is reported. The easy procedure accessing the products efficiently from readily available starting materials may imply a potential synthetic application.


Subject(s)
Anthracenes/chemical synthesis , Aza Compounds/chemical synthesis , Diynes/chemistry , Imines/chemistry , Anthracenes/chemistry , Aza Compounds/chemistry , Catalysis , Combinatorial Chemistry Techniques , Molecular Structure , Palladium/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL