Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Catal ; 12(3): 1764-1774, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35573128

ABSTRACT

Redox-neutral carbon-carbon (C-C) bond activation and functionalization strategies of cyclopropanols that give metallo homoenolate have offered merits to construct a range of useful ß-functionalized ketones in an inverse-polarity fashion. Discovery and identification of oxidative C-C activation reactions of cyclopropanols that generate metallo enolate-homoenolate would provide an opportunity to afford α,ß-difunctionalized ketones. We report catalytic, net oxidative C-C activation, and silylation of cyclopropanols with traceless acetal directing groups under consecutive Ir and Rh catalysis in regio-, stereo-, and chemo-selective fashion. In detail, Ir-catalyzed hydrosilylation of cyclopropyl acetates provides the acetal directing group in quantitative yield. Rh-catalyzed proximal C-C silylation of the resulting cyclopropyl silyl acetal produces the metallo enolate-homoenolate equivalent, dioxasilepine, which uniquely holds an interconnected ß-silyl moiety and Z-vinyl acetal. Upon sequential treatment of a silaphile that removes the acetal directing group and electrophile, the seven-membered silicon-containing heterocycle, serving as the ketone α,ß-dianion equivalent, delivers α,ß-difunctionalized ketones. Scope of the hitherto unexplored reactivity of cyclopropanols toward net oxidative C-C silylation and the versatility of the resulting dioxasilepines were demonstrated. These include late-stage, net oxidative C-C silylation of biologically relevant molecules and facile production of a range of α,ß-difunctionalized ketones. Preliminary mechanistic studies suggest that the C-C activation harnessing the electron-rich Wilkinson-type catalyst is likely the turnover-determining step and a Rh-π interaction is the key to the efficient metal insertion to the proximal C-C bond in cyclopropanols.

2.
J Med Chem ; 64(5): 2777-2800, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33596380

ABSTRACT

Flaviviruses, including Zika, dengue, and West Nile viruses, are important human pathogens. The highly conserved NS2B-NS3 protease of Flavivirus is essential for viral replication and therefore a promising drug target. Through compound screening, followed by medicinal chemistry studies, a novel series of 2,5,6-trisubstituted pyrazine compounds are found to be potent, allosteric inhibitors of Zika virus protease (ZVpro) with IC50 values as low as 130 nM. Their structure-activity relationships are discussed. The ZVpro inhibitors also inhibit homologous proteases of dengue and West Nile viruses, and their inhibitory activities are correlated. The most potent compounds 47 and 103 potently inhibited Zika virus replication in cells with EC68 values of 300-600 nM and in a mouse model of Zika infection. These compounds represent novel pharmacological leads for drug development against Flavivirus infections.


Subject(s)
Antiviral Agents/therapeutic use , Pyrazines/therapeutic use , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/therapeutic use , Viral Proteins/metabolism , Zika Virus Infection/drug therapy , Allosteric Regulation/drug effects , Animals , Antiviral Agents/chemical synthesis , Cell Line, Tumor , Dengue Virus/enzymology , Humans , Mice , Molecular Structure , Pyrazines/chemical synthesis , Serine Proteinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Viral Nonstructural Proteins/antagonists & inhibitors , Virus Replication/drug effects , West Nile virus/enzymology , Zika Virus/enzymology
3.
Org Lett ; 22(14): 5375-5379, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32589436

ABSTRACT

The Pd-catalyzed asymmetric [4+2] cycloaddition reaction of an aliphatic 1,4-dipole with singly activated electron-deficient alkenes is realized for the first time, enabled by using a newly developed benzylic substituted P,N-ligand, affording tetrahydropyrans having three continuous chiral centers in high yields with high diastereo- and enantioselectivities. The rational transition states of the reaction as well as the role of the benzylic chiral center are proposed.

4.
J Med Chem ; 63(9): 4716-4731, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32314924

ABSTRACT

Histone acetyltransferase (HAT) p300 and its paralog CBP acetylate histone lysine side chains and play critical roles in regulating gene transcription. The HAT domain of p300/CBP is a potential drug target for cancer. Through compound screening and medicinal chemistry, novel inhibitors of p300/CBP HAT with their IC50 values as low as 620 nM were discovered. The most potent inhibitor is competitive against histone substrates and exhibits a high selectivity for p300/CBP. It inhibited cellular acetylation and had strong activity with EC50 of 1-3 µM against proliferation of several tumor cell lines. Gene expression profiling in estrogen receptor (ER)-positive breast cancer MCF-7 cells showed that inhibitor treatment recapitulated siRNA-mediated p300 knockdown, inhibited ER-mediated gene transcription, and suppressed expression of numerous cancer-related gene signatures. These results demonstrate that the inhibitor is not only a useful probe for biological studies of p300/CBP HAT but also a pharmacological lead for further drug development targeting cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Thiophenes/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , Acetylation/drug effects , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/metabolism , p300-CBP Transcription Factors/metabolism
5.
Nat Catal ; 2: 164-173, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31460492

ABSTRACT

Because of the importance of hydrogen atom transfer (HAT) in biology and chemistry, there is increased interest in new strategies to perform HAT in a sustainable manner. Here, we describe a sustainable, net redox-neutral HAT process involving hydrosilanes and alkali metal Lewis base catalysts - eliminating the use of transition metal catalysts - and report an associated mechanism concerning Lewis base-catalysed, complexation-induced HAT (LBCI-HAT). The catalytic LBCI-HAT is capable of accessing both branch-specific hydrosilylation and polymerization of vinylarenes in a highly selective fashion, depending on the Lewis base catalyst used. In this process, earth abundant, alkali metal Lewis base catalyst plays a dual role. It first serves as a HAT initiator and subsequently functions as a silyl radical stabilizing group, which is critical to highly selective cross-radical coupling. EPR study identified a potassiated paramagnetic species and multistate density function theory revealed a high HAT character, yet multiconfigurational nature in the transition state of the reaction.

6.
ACS Catal ; 9(1): 402-408, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-31179157

ABSTRACT

We report a redox-neutral, catalytic C-C activation of cyclopropyl acetates to produce silicon-containing five-membered heterocycles in a highly region-and chemoselective fashion. The umpolung α-selective silylation leading to dioxasilolanes is opposed to contemporary ß-selective C-C functionalization protocols of cyclopropanols. Lewis base activation of dioxasilolanes as α-silyl carbinol equivalents undergoes the unconventional [1,2]-Brook rearrangement to form tertiary alcohols. Notably, mechanistic studies indicate that an electrophilic metal-π interaction harnessing highly fluorinated Tp (CF 3 ) 2 Rh(nbd) catalyst permitted a low-temperature C-C activation.

7.
J Am Chem Soc ; 141(17): 6832-6836, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31017399

ABSTRACT

Flaviviruses, including dengue, West Nile and recently emerged Zika virus, are important human pathogens, but there are no drugs to prevent or treat these viral infections. The highly conserved Flavivirus NS2B-NS3 protease is essential for viral replication and therefore a drug target. Compound screening followed by medicinal chemistry yielded a series of drug-like, broadly active inhibitors of Flavivirus proteases with IC50 as low as 120 nM. The inhibitor exhibited significant antiviral activities in cells (EC68: 300-600 nM) and in a mouse model of Zika virus infection. X-ray studies reveal that the inhibitors bind to an allosteric, mostly hydrophobic pocket of dengue NS3 and hold the protease in an open, catalytically inactive conformation. The inhibitors and their binding structures would be useful for rational drug development targeting Zika, dengue and other Flaviviruses.


Subject(s)
Antiviral Agents/therapeutic use , Protease Inhibitors/therapeutic use , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Zika Virus Infection/drug therapy , Allosteric Site , Aminopyridines/chemical synthesis , Aminopyridines/metabolism , Aminopyridines/therapeutic use , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Crystallography, X-Ray , Dengue Virus/enzymology , Drug Discovery , Female , Humans , Male , Mice, Inbred C57BL , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Protein Binding , Pyrazines/chemical synthesis , Pyrazines/metabolism , Pyrazines/therapeutic use , Serine Endopeptidases/chemistry , Vero Cells , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , West Nile virus/enzymology , Zika Virus/enzymology
8.
J Am Chem Soc ; 138(25): 7982-91, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27265033

ABSTRACT

A new, highly selective, bond functionalization strategy, achieved via relay of two transition metal catalysts and the use of traceless acetal directing groups, has been employed to provide facile formation of C-Si bonds and concomitant functionalization of a silicon group in a single vessel. Specifically, this approach involves the relay of Ir-catalyzed hydrosilylation of inexpensive and readily available phenyl acetates, exploiting disubstituted silyl synthons to afford silyl acetals and Rh-catalyzed ortho-C-H silylation to provide dioxasilines. A subsequent nucleophilic addition to silicon removes the acetal directing groups and directly provides unmasked phenol products and, thus, useful functional groups at silicon achieved in a single vessel. This traceless acetal directing group strategy for catalytic ortho-C-H silylation of phenols was also successfully applied to preparation of multisubstituted arenes. Remarkably, a new formal α-chloroacetyl directing group has been developed that allows catalytic reductive C-H silylation of sterically hindered phenols. In particular, this new method permits access to highly versatile and nicely differentiated 1,2,3-trisubstituted arenes that are difficult to access by other catalytic routes. In addition, the resulting dioxasilines can serve as chromatographically stable halosilane equivalents, which allow not only removal of acetal directing groups but also introduce useful functional groups leading to silicon-bridged biaryls. We demonstrated that this catalytic C-H bond silylation strategy has powerful synthetic potential by creating direct applications of dioxasilines to other important transformations, examples of which include aryne chemistry, Au-catalyzed direct arylation, sequential orthogonal cross-couplings, and late-stage silylation of phenolic bioactive molecules and BINOL scaffolds.


Subject(s)
Phenol/chemistry , Silanes/chemistry , Acetals/chemistry , Acetates , Carbon/chemistry , Catalysis , Chemistry, Organic/methods , Estradiol/chemistry , Estrone/chemistry , Gold/chemistry , Hydrogen/chemistry , Magnetic Resonance Spectroscopy , Oxygen/chemistry , Palladium/chemistry , Phenols/chemistry , Silicon/chemistry , Transition Elements/chemistry
9.
Org Lett ; 17(23): 5792-5, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26566189

ABSTRACT

A Lewis base promoted deprotonative pronucleophile addition to silyl acetals has been developed and applied to the iridium-catalyzed reductive Horner-Wadsworth-Emmons (HWE) olefination of esters and the chemoselective reduction of the resulting enoates. Lewis base activation of silyl acetals generates putative pentacoordinate silicate acetals, which fragment into aldehydes, silanes, and alkoxides in situ. Subsequent deprotonative metalation of phosphonate esters followed by HWE with aldehydes furnishes enoates. This operationally convenient, mechanistically unique protocol converts the traditionally challenging aryl, alkenyl, and alkynyl esters to homologated enoates at room temperature within a single vessel.

10.
J Org Chem ; 80(9): 4661-71, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25853682

ABSTRACT

We report a modular approach to catalytic reductive Csp2-H and Csp3-H silylation of carboxylic acid derivatives encompassing esters, ketones, and aldehydes. Choice of either an Ir(I)/Rh(I) or Rh(I)/Rh(I) sequence leads to either exhaustive reductive ester or reductive ketone/aldehyde silylation, respectively. Notably, a catalyst-controlled direct formation of doubly reduced silyl ethers is presented, specifically via Ir-catalyzed exhaustive hydrosilylation. The resulting silyl ethers undergo Csp2-H and benzylic Csp3-H silylation in a single vessel.

11.
Chem Commun (Camb) ; 51(18): 3778-81, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25646601

ABSTRACT

This work describes the design and application of a single-pot, reductive arene C-H silanolization of aromatic esters for synthesis of ortho-formyl arylsilanols. This strategy involves a sequence of two transition metal (Ir and Rh)-catalyzed reactions for reductive arene ortho-silylation directed by hydridosilyl acetals and hydrolysis.


Subject(s)
Acetals/chemistry , Silanes/chemistry , Catalysis , Esters , Hydrolysis , Iridium/chemistry , Oxidation-Reduction , Rhodium/chemistry
12.
Org Lett ; 15(13): 3412-5, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23773003

ABSTRACT

Ligand-controlled, norbornene-mediated, regio- and diastereoselective rhodium-catalyzed intramolecular alkene hydrosilylation of homoallyl silyl ethers (1) exploiting either BINAP or 1,6-bis(diphenylphosphino)hexane (dpph) has been developed. This method permits selective access to either trans-oxasilacyclopentanes (trans-2) or oxasilacyclohexanes (3) at will. A substoichiometric amount of norbornene markedly increased both yield and selectivity. A norbornene-mediated hydride shuttle process is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...