Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 365
Filter
1.
Environ Sci Ecotechnol ; 21: 100432, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38832301

ABSTRACT

The size and composition of particulate matter (PM) are pivotal in determining its adverse health effects. It is important to understand PM's retention by plants to facilitate its atmospheric removal. However, the distinctions between the size and composition of naturally fallen PM (NFPM) and leaf-deposited PM (LDPM) are not well-documented. Here we utilize a single-particle aerosol mass spectrometer, coupled with a PM resuspension chamber, to analyze these differences. We find that LDPM particles are 6.8-97.3 % larger than NFPM. Employing a neural network algorithm based on adaptive resonance theory, we have identified distinct compositional profiles: NFPM predominantly consists of organic carbon (OC; 31.2 %) and potassium-rich components (19.1 %), whereas LDPM are largely composed of crustal species (53.9-60.6 %). Interestingly, coniferous species retain higher OC content (11.5-13.7 %) compared to broad-leaved species (0.5-1.2 %), while the levoglucosan content exhibit an opposite trend. Our study highlights the active role of tree leaves in modifying PM composition beyond mere passive capture, advocating for a strategic approach to species selection in urban greening initiatives to enhance PM mitigation. These insights provide guidance for urban planners and environmentalists in implementing nature-based solutions to improve urban air quality.

3.
Sci Total Environ ; 928: 172428, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38615765

ABSTRACT

The increasing level of mechanization in coal mining means more dust and gas are generated during excavation operations in tunnels. The high concentrations of dust and gas severely affect production efficiency and the physical and mental health of workers. Here, Ansys Fluent simulations were performed to derive the spatiotemporal evolution of coupled airflow-dust-gas diffusion in a low-gas excavation face. The aim was to optimize pollution control by determining the optimal duct distance, L, from the working face in the excavation tunnel. Our results showed that the airflow field affects the coupled diffusion and transport of dust and gas. According to a comparison of the effects of different duct distances from the working face, when L = 6 m, the average dust concentration in the tunnel is low (257.6 mg/m3), and the average gas concentration in the tunnel is 0.28 %, which does not exceed the safety limit. Accordingly, the optimal distance of the duct for pollution control is 6 m. The results of field measurements supported the validity of the simulation. Our findings can be used to improve the air quality in tunnels, thereby keeping miners safe and the working area clean.

4.
Chin J Traumatol ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38548574

ABSTRACT

PURPOSE: Although traditional craniotomy (TC) surgery has failed to show benefits for the functional outcome of intracerebral hemorrhage (ICH). However, a minimally invasive hematoma removal plan to avoid white matter fiber damage may be a safer and more feasible surgical approach, which may improve the prognosis of ICH. We conducted a historical cohort study on the use of multimodal image fusion-assisted neuroendoscopic surgery (MINS) for the treatment of ICH, and compared its safety and effectiveness with traditional methods. METHODS: This is a historical cohort study involving 241 patients with cerebral hemorrhage. Divided into MINS group and TC group based on surgical methods. Multimodal images (CT skull, CT angiography, and white matter fiber of MRI diffusion-tensor imaging) were fused into 3 dimensional images for preoperative planning and intraoperative guidance of endoscopic hematoma removal in the MINS group. Clinical features, operative efficiency, perioperative complications, and prognoses between 2 groups were compared. Normally distributed data were analyzed using t-test of 2 independent samples, Non-normally distributed data were compared using the Kruskal-Wallis test. Meanwhile categorical data were analyzed via the Chi-square test or Fisher's exact test. All statistical tests were two-sided, and p < 0.05 was considered statistically significant. RESULTS: A total of 42 patients with ICH were enrolled, who underwent TC surgery or MINS. Patients who underwent MINS had shorter operative time (p < 0.001), less blood loss (p < 0.001), better hematoma evacuation (p = 0.003), and a shorter stay in the intensive care unit (p = 0.002) than patients who underwent TC. Based on clinical characteristics and analysis of perioperative complications, there is no significant difference between the 2 surgical methods. Modified Rankin scale scores at 180 days were better in the MINS than in the TC group (p = 0.014). CONCLUSIONS: Compared with TC for the treatment of ICH, MINS is safer and more efficient in cleaning ICH, which improved the prognosis of the patients. In the future, a larger sample size clinical trial will be needed to evaluate its efficacy.

5.
J Obstet Gynaecol Res ; 50(6): 1051-1055, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423535

ABSTRACT

Primary leiomyosarcoma of the fallopian tube (PLFT) is an extremely rare gynecological malignancy that has only been described in case reports. Fertility-sparing treatment for PLFT has not been reported previously. A 24-year-old nulligravida woman was diagnosed with stage IC1 PLFT in the right fallopian tube after experiencing right lower quadrant pain for 2 weeks. She underwent laparoscopic right salpingectomy to preserve fertility followed by adjuvant chemotherapy with gemcitabine/docetaxel. She subsequently became pregnant spontaneously, delivering a term baby 27 months after treatment. This appears to be the only report of the use of fertility-preserving treatment for PLFT. The success of the treatment provides valuable information on the preservation of fertility in young women with PLFT.


Subject(s)
Fallopian Tube Neoplasms , Fertility Preservation , Leiomyosarcoma , Humans , Female , Leiomyosarcoma/surgery , Leiomyosarcoma/drug therapy , Pregnancy , Fertility Preservation/methods , Fallopian Tube Neoplasms/drug therapy , Fallopian Tube Neoplasms/surgery , Young Adult , Salpingectomy , Adult , Docetaxel/therapeutic use , Docetaxel/administration & dosage
6.
EBioMedicine ; 101: 104978, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320878

ABSTRACT

BACKGROUND: Psychiatric disorders have been associated with higher risk for future dementia. Understanding how pre-dementia psychiatric disorders (PDPD) relate to established dementia genetic risks has implications for dementia prevention. METHODS: In this retrospective cohort study, we investigated the relationships between polygenic risk scores for Alzheimer's disease (AD PRS), PDPD, alcohol use disorder (AUD), and subsequent dementia in the UK Biobank (UKB) and tested whether the relationships are consistent with different causal models. FINDINGS: Among 502,408 participants, 9352 had dementia. As expected, AD PRS was associated with greater risk for dementia (odds ratio (OR) 1.62, 95% confidence interval (CI), 1.59-1.65). A total of 94,237 participants had PDPD, of whom 2.6% (n = 2519) developed subsequent dementia, compared to 1.7% (n = 6833) of 407,871 participants without PDPD. Accordingly, PDPD were associated with 73% greater risk of incident dementia (OR 1.73, 1.65-1.83). Among dementia subtypes, the risk increase was 1.5-fold for AD (n = 3365) (OR 1.46, 1.34-1.59) and 2-fold for vascular dementia (VaD, n = 1823) (OR 2.08, 1.87-2.32). Our data indicated that PDPD were neither a dementia prodrome nor a mediator for AD PRS. Shared factors for both PDPD and dementia likely substantially account for the observed association, while a causal role of PDPD in dementia could not be excluded. AUD could be one of the shared causes for PDPD and dementia. INTERPRETATION: Psychiatric diagnoses were associated with subsequent dementia in UKB participants, and the association is orthogonal to established dementia genetic risks. Investigating shared causes for psychiatric disorders and dementia would shed light on this dementia pathway. FUNDING: US NIH (K08AG054727).


Subject(s)
Alcoholism , Alzheimer Disease , Mental Disorders , Humans , UK Biobank , Biological Specimen Banks , Retrospective Studies , Mental Disorders/epidemiology , Mental Disorders/genetics , Alzheimer Disease/diagnosis , Alzheimer Disease/epidemiology , Alzheimer Disease/etiology , Risk Factors , Alcoholism/genetics
7.
Phys Chem Chem Phys ; 26(10): 8515-8527, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38411591

ABSTRACT

Two-dimensional ferromagnetic materials with intrinsic half-metallic properties have strong application advantages in nanoscale spintronics. Herein, density functional theory calculations show that monolayer ScCl is a ferromagnetic metallic material when undoped (n = 0), and the transition from metal to half-metal occurs with the continuous doping of holes. On the contrary, as the concentration of doped electrons increases, the system will exhibit metallic characteristics, which is particularly evident from a variation in spin polarizability. Furthermore, we have discussed how doped carriers affect the shape of the Fermi surface and the Fermi velocity of electrons. Most importantly, Monte Carlo simulations show that the ScCl monolayer is particularly regulated by carrier concentration (n) and magnetic field (h). Additionally, trends in energy and magnetic exchange coupling in different magnetic configurations (AFM phase and FM phase) with different doping concentrations are presented. When n < -0.16, the material is not only a half-metallic material that easily flips the magnetic axis, but also proves to be a candidate ferromagnetic material that works stably at room temperature in terms of dynamic stability. In addition, the origin of magnetocrystalline anisotropy is analyzed, and the contribution of different orbitals to spin-orbit coupling is presented. Moreover, we note that when magnetic field is small (h < 1 T), the change in size has a significant effect on ferromagnetic phase transition. However, when the system size is large (size >15 nm), TC is less sensitive to magnetic field. In addition, hole doping and size effect will greatly affect the hC of the system, but when the hole doping exceeds the critical value (n = -0.16), its influence on the hysteresis loop is no longer obvious. These interesting magnetic phenomena and easily adjustable physical properties show us that monolayer ScCl will be a promising functional material.

8.
Phys Chem Chem Phys ; 26(8): 6956-6966, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38334722

ABSTRACT

The investigation and development of high thermoelectric value materials has become a research hotspot in recent years. In this work, based on the density functional theory on the Perdew-Burke-Ernzerhof (GGA-PBE) level, the thermoelectric properties of transition metal halides CdBr, Janus Cd2BrI, and CdI monolayers have been systematically investigated using Boltzmann transport theory. The calculation of the electronic band structure shows that these three materials have indirect band gap semiconductor properties. For carrier transport, the electron mobilities for CdBr, Janus Cd2BrI, and CdI monolayers are found to be 74, 16, 21 cm2 s-1 V-1 for p-type doping and 116, 102, 78 cm2 s-1 V-1 for n-type doping. Regarding their phonon transport, the CdBr, Cd2BrI, and CdI monolayers all have very low lattice thermal conductivity (4.78, 2.46, and 1.65 W m-1 K-1, respectively) that decreases with increasing temperature, which is favorable for obtaining large zT values. The electrical transport results show that the performance of p-type doping is better than that of n-type doping. At 300 K, the Seebeck coefficients of p-type doping for the CdBr, Cd2BrI, and CdI monolayers are 217.72, 246.43, and 226.24 µV K-1, respectively. In addition, we predict that the zT values of the CdBr, Cd2BrI, and CdI monolayers are 0.62, 1.64, and 0.87 for p-type doping at 300 K respectively. The zT values increase with the increase of temperature. In particular, the Janus Cd2BrI monolayer has a zT value of 3.03 at 600 K. These results suggest that all these materials can be good candidates for thermoelectric materials.

9.
Phys Chem Chem Phys ; 26(4): 3159-3167, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38190261

ABSTRACT

A superior piezoelectric coefficient and diminutive lattice thermal conductivity are advantageous for the application of a two-dimensional semiconductor in piezoelectric and thermoelectric devices, whereas an imperfect piezoelectric coefficient and large lattice thermal conductivity limit the practical application of the material. In this study, we investigate how the equibiaxial strain regulates the electronic structure, and mechanical, piezoelectric, and thermal transport properties. Tensile strain can deduce the bandgap of the monolayer CrX2 (X = S, Se, Te), whereas compressive strain has an opposite effect. Additionally, the transition from a semiconductor to a metal state and the transition between direct and indirect band gaps will occur at appropriate strain values, so the electronic structure can be effectively regulated. The reason is the different sensitivities of the energy corresponding to K and Γ on the valence band to the strain due to the changes in different orbital overlaps. The tensile strain can effectively improve the flexibility of monolayers CrX2, which provides a possibility for the application of flexible electronic devices. Furthermore, the tensile strain can improve the piezoelectric strain coefficient of monolayers CrX2. Using Slacks formulation, we calculate the lattice thermal conductivity, and the tensile biaxial strain can reduce the lattice thermal conductivity. Our research provides a strategy to enhance the piezoelectric and flexible electronic applications and decrease the lattice thermal conductivity, which can benefit the thermoelectric applications.

10.
Curr Mol Med ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38192147

ABSTRACT

Myasthenia gravis (MG) is an acquired autoimmune disease that is mediated by humoral immunity, supplemented by cellular immunity, along with participation of the complement system. The pathogenesis of MG is complex; although autoimmune dysfunction is clearly implicated, the specific mechanism remains unclear. Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with lengths greater than 200 nucleotides, with increasing evidence of their rich biological functions and high-level structure conservation. LncRNAs can directly interact with proteins and microRNAs to regulate the expression of target genes at the transcription and post-transcription levels. In recent years, emerging studies have suggested that lncRNAs play roles in the differentiation of immune cells, secretion of immune factors, and complement production in the human body. This suggests the involvement of lncRNAs in the occurrence and progression of MG through various mechanisms. In addition, the differentially expressed lncRNAs in peripheral biofluid may be used as a biomarker to diagnose MG and evaluate its prognosis. Moreover, with the development of lncRNA expression regulation technology, it is possible to regulate the differentiation of immune cells and influence the immune response by regulating the expression of lncRNAs, which will provide a potential therapeutic option for MG. Here, we review the research progress on the role of lncRNAs in different pathophysiological events contributing to MG, focusing on specific lncRNAs that may largely contribute to the pathophysiology of MG, which could be used as potential diagnostic biomarkers and therapeutic targets.

11.
Phys Chem Chem Phys ; 26(5): 4629-4642, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38251770

ABSTRACT

Bismuth chalcogenide and its derivatives have been attracting attention in various fields as semiconductors or topological insulators. Inspired by the high piezoelectric properties of Janus Bi2TeSeS monolayer and the excellent optical absorption properties of the Bi2X3 (X = Te, Se, S) monolayers, we theoretically predicted four new-type two-dimensional (2D) monolayers Janus Bi2X2Y (X = Te, Se; Y = Te, Se, S) using the first principles combined with density functional theory (DFT). The thermal, dynamic, and mechanical stabilities of Janus Bi2X2Y monolayers were confirmed based on ab initio molecular dynamics (AIMD) simulations, phonon dispersion, and elastic constants calculations. Their elastic properties, band structures, piezoelectric, and optical properties were systematically investigated. It was found that Janus Bi2X2Y monolayers have a typical Mexican hat-shaped valence band edge structure and, therefore, have a ring-shaped flat band edge, which results in their indirect band gaps. The results show that Janus Bi2X2Y monolayers are semiconductors with moderate band gaps (0.62-0.98 eV at the HSE + SOC level). After considering the electron-phonon renormalization (EPR), the band gaps are reduced by less than 5% at 0 K under the zero-point renormalization (ZPR) and further reduced by approximately 10% at 300 K. Besides, Janus Bi2X2Y monolayers also exhibit excellent optical absorption properties in the blue-UV light region, with the peak values at the order of 8 × 105 cm-1. Particularly, the Janus Bi2Te2S monolayer was found to exhibit a piezoelectric strain coefficient d11 of up to 20.30 pm V-1, which is higher than that of most of the 2D materials. Our results indicate that Janus Bi2X2Y monolayers could be promising candidates in solar cells, optical absorption, and optoelectronic devices; especially, a Janus Bi2Te2S monolayer can also be an excellent piezoelectric material with great prospects in the fields of mechanical and electrical energy conversion.

12.
BMC Pediatr ; 24(1): 82, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279097

ABSTRACT

BACKGROUND: Severe neonatal hyperbilirubinemia could lead to kernicterus and neonatal death. This study aimed to analyze the association between single nucleotide polymorphisms in genes involved in bilirubin metabolism and the incidence of severe hyperbilirubinemia. METHODS: A total of 144 neonates with severe hyperbilirubinemia and 50 neonates without or mild hyperbilirubinemia were enrolled in 3 institutions between 2019 and 2020. Twelve polymorphisms of 5 genes (UGT1A1, SLCO1B1, SLCO1B3, BLVRA, and HMOX1) were analyzed by PCR amplification of genomic DNA. Genotyping was performed using an improved multiplex ligation detection reaction technique based on ligase detection reaction. RESULTS: The frequencies of the A allele in UGT1A1-rs4148323 and the C allele in SLCO1B3-rs2417940 in the severe hyperbilirubinemia group (30.2% and 90.6%, respectively) were significantly higher than those in the controls (30.2% vs.13.0%, 90.6% vs. 78.0%, respectively, both p < 0.05). Haplotype analysis showed the ACG haplotype of UGT1A1 were associated with an increased hyperbilirubinemia risk (OR 3.122, p = 0.001), whereas the GCG haplotype was related to a reduced risk (OR 0.523, p = 0.018). CONCLUSION: The frequencies of the A allele in rs4148323 and the C allele in rs2417940 are highly associated with the incidence of severe hyperbilirubinemia in Chinese Han neonates. TRIAL REGISTRATION: Trial registration number:ChiCTR1800020424; Date of registration:2018-12-29.


Subject(s)
Hyperbilirubinemia, Neonatal , Polymorphism, Single Nucleotide , Infant, Newborn , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Alleles , Hyperbilirubinemia, Neonatal/genetics , Glucuronosyltransferase/genetics , China/epidemiology , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
13.
IEEE Trans Med Imaging ; 43(4): 1476-1488, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38048240

ABSTRACT

Accurate vascular segmentation from High Resolution 3-Dimensional (HR3D) medical scans is crucial for clinicians to visualize complex vasculature and diagnose related vascular diseases. However, a reliable and scalable vessel segmentation framework for HR3D scans remains a challenge. In this work, we propose a High-resolution Energy-matching Segmentation (HrEmS) framework that utilizes deep learning to directly process the entire HR3D scan and segment the vasculature to the finest level. The HrEmS framework introduces two novel components. Firstly, it uses the real-order total variation operator to construct a new loss function that guides the segmentation network to obtain the correct topology structure by matching the energy of the predicted segment to the energy of the manual label. This is different from traditional loss functions such as dice loss, which matches the pixels between predicted segment and manual label. Secondly, a curvature-based weight-correction module is developed, which directs the network to focus on crucial and complex structural parts of the vasculature instead of the easy parts. The proposed HrEmS framework was tested on three in-house multi-center datasets and three public datasets, and demonstrated improved results in comparison with the state-of-the-art methods using both topology-relevant and volumetric-relevant metrics. Furthermore, a double-blind assessment by three experienced radiologists on the critical points of the clinical diagnostic processes provided additional evidence of the superiority of the HrEmS framework.


Subject(s)
Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods
14.
Nucleic Acids Res ; 52(D1): D1333-D1346, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953324

ABSTRACT

The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.


Subject(s)
Biological Ontologies , Humans , Phenotype , Genomics , Algorithms , Rare Diseases
15.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5438-5449, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114137

ABSTRACT

Huangqi Guizhi Wuwu Decoction is a classic prescription in traditional Chinese medicine(TCM) and is known for its effects of tonifying Qi, warming the meridians, and promoting blood circulation to alleviate obstruction. It is primarily used to treat conditions characterized by Qi stagnation, Yang deficiency, and obstruction, and it exhibits pharmacological effects such as immune regulation, anti-inflammation, analgesia, protection of the cardiovascular and cerebrovascular systems, itch relief, reduction of frostbite symptoms, antioxidative stress, promotion of cell apoptosis, and kidney protection. In modern clinical practice, it is commonly used to treat acute myocardial infarction, sequelae of cerebral infarction, cervical spondylosis, frozen shoulder, lower limb arteriosclerosis, lower limb vascular disorders, peripheral neuropathy in diabetes, and lupus nephritis. Recent research has focused on the chemical components, pharmacological effects, and clinical applications of Huangqi Guizhi Wuwu Decoction. Based on the "five principles" of quality markers(Q-markers) in TCM, this study predicted and analyzed the Q-markers of Huangqi Guizhi Wuwu Decoction. It suggested that astragaloside Ⅳ, formononetin, kaempferol, quercetin, cinnamic acid, cinnamaldehyde, 6-gingerol, paeoniflorin, albiflorin, and gallic acid could serve as Q-markers for Huangqi Guizhi Wuwu Decoction. The findings of this study can provide references for quality control of Huangqi Guizhi Wuwu Decoction and the development of new Chinese medicinal formulations.


Subject(s)
Drugs, Chinese Herbal , Frostbite , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Astragalus propinquus , Frostbite/drug therapy
16.
Phys Chem Chem Phys ; 25(45): 31312-31325, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37955953

ABSTRACT

Two-dimensional (2D) materials have been one of the most popular objects in the research field of thermoelectric (TE) materials and have attracted substantial attention in recent years. Inspired by the synthesized 2H-MoSSe and numerous theoretical studies, we systematically investigated the electronic, thermal, and TE properties of Janus 2H-MXTe (M = Zr and Hf; X = S and Se) monolayers by using first-principles calculations. The phonon dispersion curves and AIMD simulations confirm the thermodynamic stabilities. Moreover, Janus 2H-MXTe were evaluated as indirect band-gap semiconductors with band gaps ranging from 0.56 to 0.90 eV using the HSE06 + SOC method. To evaluate the TE performance, firstly, we calculated the temperature-dependent carrier relaxation time with acoustic phonon scattering τac, impurity scattering τimp, and polarized scattering τpol. Secondly, the calculation of lattice thermal conductivity (κl) shows that these monolayers possess relatively poor κl with values of 3.4-5.4 W mK-1 at 300 K, which is caused by the low phonon lifetime and group velocity. After computing the electronic transport properties, we found that the n-type doped Janus 2H-MXTe monolayers exhibit a high Seebeck coefficient exceeding 200 µV K-1 at 300 K, resulting in a high TE power factor. Eventually, combining the electrical and thermal conductivities, the optimal dimensionless figure of merit (zT) at 300 K (900 K) can be obtained, which is 0.94 (3.63), 0.51 (2.57), 0.64 (2.72), and 0.50 (1.98) for n-type doping of ZrSeTe, HfSeTe, ZeSTe, and HfSTe monolayers. Particularly, the ZrSeTe monolayer shows the best TE performance with the maximal zT value. These results indicate the excellent application potential of Janus 2H-MXTe (M = Zr and Hf; X = S and Se) monolayers in TE materials.

17.
Phys Chem Chem Phys ; 25(38): 26152-26163, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37740346

ABSTRACT

Inspired by the interesting and novel properties exhibited by Janus transition metal dichalcogenides (TMDs) and two-dimensional pentagonal structures, we here investigated the structural stability, mechanical, electronic, photocatalytic, and optical properties for a class of two-dimensional (2D) pentagonal Janus TMDs, namely penta-MSeTe (M = Ni, Pd, Pt) monolayers, by using density functional theory (DFT) combined with Hubbard's correction (U). Our results showed that these monolayers exhibit good structural stability, appropriate band structures for photocatalysts, high visible light absorption, and good photocatalytic applicability. The calculated electronic properties reveal that the penta-MSeTe are semiconductors with a bandgap range of 2.06-2.39 eV, and their band edge positions meet the requirements for water-splitting photocatalysts in various environments (pH = 0-13). We used stress engineering to seek higher solar-to-hydrogen (STH) efficiency in acidic (pH = 0), neutral (pH = 7) and alkaline (pH = 13) environments for penta-MSeTe from 0% to +8% biaxial and uniaxial strains. Our results showed that penta-PdSeTe stretched 8% along the y direction and demonstrates an STH efficiency of up to 29.71% when pH = 0, which breaks the theoretical limit of the conventional photocatalytic model. We also calculated the optical properties and found that they exhibit high absorption (13.11%) in the visible light range and possess a diverse range of hyperbolic regions. Hence, it is anticipated that penta-MSeTe materials hold great promise for applications in photocatalytic water splitting and optoelectronic devices.

18.
Environ Sci Pollut Res Int ; 30(44): 99484-99500, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612555

ABSTRACT

Particulate matter (PM) is one of the most harmful exhaust pollutants to human health. In this study, the PM diffusion and distribution emitted by trackless rubber-tyred vehicle under different driving conditions in coal mine were analyzed with numerical simulations and field measurements. The results show that when the vehicle velocity was constant, the PM concentration of the trackless rubber-tyred vehicle decreased with increasing distance from the exhaust pipe orifice. In addition, the proportion of PM with a concentration below 10 mg/m3 was the highest owing to the influences of diffusion and airflow dilution. However, when the diffusion distance is less than 3 m, the PM concentration far exceeds the occupational exposure limit (10 mg/m3). In this case, underground personnel should stay away from the area near and along the exhaust pipe as far as possible. With increasing vehicle velocity, the PM concentration gradient at a diffusion distance of 0-6 m showed the most significant slope. Besides, the concentration fluctuation of PM was the largest and relatively high when the diffusion distance was 5-15 m. Therefore, the area 15 m from the exhaust gas pipe opening of the trackless rubber-tyred vehicle should be controlled. In addition, the relative errors between the measured and numerical simulation results were mostly less than 10%, which proved that the numerical simulation results were reliable.


Subject(s)
Air Pollutants , Coal Mining , Humans , Particulate Matter/analysis , Rubber , Air Pollutants/analysis , Vehicle Emissions/analysis , Coal
19.
SLAS Discov ; 2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37549772

ABSTRACT

Three series of compounds were prioritized from a high content screening campaign that identified molecules that blocked dihydrotestosterone (DHT) induced formation of Androgen Receptor (AR) protein-protein interactions (PPIs) with the Transcriptional Intermediary Factor 2 (TIF2) coactivator and also disrupted preformed AR-TIF2 PPI complexes; the hydrobenzo-oxazepins (S1), thiadiazol-5-piperidine-carboxamides (S2), and phenyl-methyl-indoles (S3). Compounds from these series inhibited AR PPIs with TIF2 and SRC-1, another p160 coactivator, in mammalian 2-hybrid assays and blocked transcriptional activation in reporter assays driven by full length AR or AR-V7 splice variants. Compounds inhibited the growth of five prostate cancer cell lines, with many exhibiting differential cytotoxicity towards AR positive cell lines. Representative compounds from the 3 series substantially reduced both endogenous and DHT-enhanced expression and secretion of the prostate specific antigen (PSA) cancer biomarker in the C4-2 castration resistant prostate cancer (CRPC) cell line. The comparatively weak activities of series compounds in the H3-DHT and/or TIF2 box 3 LXXLL-peptide binding assays to the recombinant ligand binding domain of AR suggest that direct antagonism at the orthosteric ligand binding site or AF-2 surface respectively are unlikely mechanisms of action. Cellular enhanced thermal stability assays (CETSA) indicated that compounds engaged AR and reduced the maximum efficacy and right shifted the EC50 of DHT-enhanced AR thermal stabilization consistent with the effects of negative allosteric modulators. Molecular docking of potent representative hits from each series to AR structures suggest that S1-1 and S2-6 engage a novel binding pocket (BP-1) adjacent to the orthosteric ligand binding site, while S3-11 occupies the AR binding function 3 (BF-3) allosteric pocket. Hit binding poses indicate spaces and residues adjacent to the BP-1 and BF-3 pockets that will be exploited in future medicinal chemistry optimization studies. Small molecule allosteric modulators that prevent/disrupt AR PPIs with coactivators like TIF2 to alter transcriptional activation in the presence of orthosteric agonists might evade the resistance mechanisms to existing prostate cancer drugs and provide novel starting points for medicinal chemistry lead optimization and future development into therapies for metastatic CRPC.

20.
Stat Methods Med Res ; 32(9): 1680-1693, 2023 09.
Article in English | MEDLINE | ID: mdl-37431594

ABSTRACT

Parallel design and crossover design are two of the most frequently used designs for studying drug-gene interactions. Due to the concerns of statistical power and ethics, it is often more prudent to use the crossover design while allowing the patients to have choices of not switching the treatment if the first stage treatment is effective. This complicates the calculation of the required sample size to achieve pre-specified statistical power. We propose a method to determine the required sample size with a closed-form formula. The proposed approach is applied to determine the sample size of an adaptive crossover trial in studying gene-drug interaction in treating atrial fibrillation, the most common cardiac arrhythmia in clinical practice. Our simulation study confirms the power achieved by the sample size determined using the proposed approach. Issues related to the adaptive crossover trial are also discussed and practical guidelines are provided.


Subject(s)
Models, Statistical , Research Design , Humans , Sample Size , Cross-Over Studies , Computer Simulation , Drug Interactions , Data Interpretation, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...