Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35805993

ABSTRACT

Necroptosisis a regulatory programmed form of necrosis. Receptor interacting protein kinase 3 (RIPK3) is a robust indicator of necroptosis. RIPK3 mediates myocardial necroptosis through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) in cardiac ischemia-reperfusion (I/R) injury and heart failure. However, the exact mechanism of RIPK3 in advanced glycation end products (AGEs)-induced cardiomyocytes necroptosis is not clear. In this study, cardiomyocytes were subjected to AGEs stimulation for 24 h. RIPK3 expression, CaMKII expression, and necroptosis were determined in cardiomyocytes after AGEs stimulation. Then, cardiomyocytes were transfected with RIPK3 siRNA to downregulate RIPK3 followed by AGEs stimulation for 24 h. CaMKIIδ alternative splicing, CaMKII activity, oxidative stress, necroptosis, and cell damage were detected again. Next, cardiomyocytes were pretreated with GSK'872, a specific RIPK3 inhibitor to assess whether it could protect cardiomyocytes against AGEs stimulation. We found that AGEs increased the expression of RIPK3, aggravated the disorder of CaMKII δ alternative splicing, promoted CaMKII activation, enhanced oxidative stress, induced necroptosis, and damaged cardiomyocytes. RIPK3 downregulation or RIPK3 inhibitor GSK'872 corrected CaMKIIδ alternative splicing disorder, inhibited CaMKII activation, reduced oxidative stress, attenuated necroptosis, and improved cell damage in cardiomyocytes.


Subject(s)
Necroptosis , Receptor-Interacting Protein Serine-Threonine Kinases , Reperfusion Injury , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Glycation End Products, Advanced/metabolism , Humans , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Necrosis/metabolism , Phosphorylation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Reperfusion Injury/metabolism
2.
Oxid Med Cell Longev ; 2021: 6617816, 2021.
Article in English | MEDLINE | ID: mdl-34194608

ABSTRACT

Activation of Ca2+/calmodulin-dependent protein kinase (CaMKII) has been proved to play a vital role in cardiovascular diseases. Receptor-interaction protein kinase 3- (RIPK3-) mediated necroptosis has crucially participated in cardiac dysfunction. The study is aimed at investigating the effect as well as the mechanism of CaMKII activation and necroptosis on diabetic cardiomyopathy (DCM). Wild-type (WT) and the RIPK3 gene knockout (RIPK3-/-) mice were intraperitoneally injected with 60 mg/kg/d streptozotocin (STZ) for 5 consecutive days. After 12 w of feeding, 100 µL recombinant adenovirus solution carrying inhibitor 1 of protein phosphatase 1 (I1PP1) gene was injected into the caudal vein of mice. Echocardiography, myocardial injury, CaMKII activity, necroptosis, RIPK1 expression, mixed lineage kinase domain-like protein (MLKL) phosphorylation, and mitochondrial ultrastructure were measured. The results showed that cardiac dysfunction, CaMKII activation, and necroptosis were aggravated in streptozotocin- (STZ-) stimulated mice, as well as in (Lepr) KO/KO (db/db) mice. RIPK3 deficiency alleviated cardiac dysfunction, CaMKII activation, and necroptosis in DCM. Furthermore, I1PP1 overexpression reversed cardiac dysfunction, myocardial injury and necroptosis augment, and CaMKII activity enhancement in WT mice with DCM but not in RIPK3-/- mice with DCM. The present study demonstrated that CaMKII activation and necroptosis augment in DCM via a RIPK3-dependent manner, which may provide therapeutic strategies for DCM.


Subject(s)
Diabetes Complications/complications , Diabetic Cardiomyopathies/genetics , Necroptosis/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Disease Models, Animal , Humans , Male , Mice , Mice, Knockout
3.
Int J Mol Sci ; 21(18)2020 Sep 13.
Article in English | MEDLINE | ID: mdl-32933152

ABSTRACT

Dihydromyricetin (DHY), a flavonoid component isolated from Ampelopsis grossedentata, exerts versatile pharmacological activities. However, the possible effects of DHY on diabetic vascular endothelial dysfunction have not yet been fully elucidated. In the present study, male C57BL/6 mice, wild type (WT) 129S1/SvImJ mice and sirtuin 3 (SIRT3) knockout (SIRT3-/-) mice were injected with streptozotocin (STZ, 60 mg/kg/day) for 5 consecutive days. Two weeks later, DHY were given at the doses of 250 mg/kg by gavage once daily for 12 weeks. Fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) level, endothelium-dependent relaxation of thoracic aorta, reactive oxygen species (ROS) production, SIRT3, and superoxide dismutase 2 (SOD2) protein expressions, as well as mitochondrial Deoxyribonucleic Acid (mtDNA) copy number, in thoracic aorta were detected. Our study found that DHY treatment decreased FBG and HbA1c level, improved endothelium-dependent relaxation of thoracic aorta, inhibited oxidative stress and ROS production, and enhanced SIRT3 and SOD2 protein expression, as well as mtDNA copy number, in thoracic aorta of diabetic mice. However, above protective effects of DHY were unavailable in SIRT3-/- mice. The study suggested DHY improved endothelial dysfunction in diabetic mice via oxidative stress inhibition in a SIRT3-dependent manner.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Endothelial Cells/drug effects , Endothelium, Vascular/drug effects , Flavonols/pharmacology , Oxidative Stress/drug effects , Sirtuin 3/metabolism , Vascular Diseases/drug therapy , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Blood Glucose/drug effects , DNA/metabolism , DNA Copy Number Variations/drug effects , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Vascular Diseases/metabolism
4.
Front Pharmacol ; 11: 42, 2020.
Article in English | MEDLINE | ID: mdl-32116717

ABSTRACT

Diabetic cardiomyopathy (DCM) is a chronic complication of diabetes mellitus, characterized by abnormalities of myocardial structure and function. Researches on the models of type 1 and type 2 diabetes mellitus as well as the application of genetic engineering technology help in understanding the molecular mechanism of DCM. DCM has multiple hallmarks, including hyperglycemia, insulin resistance, increased free radical production, lipid peroxidation, mitochondrial dysfunction, endothelial dysfunction, and cell death. Essentially, cell death is considered to be the terminal pathway of cardiomyocytes during DCM. Morphologically, cell death can be classified into four different forms: apoptosis, autophagy, necrosis, and entosis. Apoptosis, as type I cell death, is the fastest form of cell death and mainly occurs depending on the caspase proteolytic cascade. Autophagy, as type II cell death, is a degradation process to remove damaged proteins, dysfunctional organelles and commences by the formation of autophagosome. Necrosis is type III cell death, which contains a great diversity of cell death processes, such as necroptosis and pyroptosis. Entosis is type IV cell death, displaying "cell-in-cell" cytological features and requires the engulfing cells to execute. There are also some other types of cell death such as ferroptosis, parthanatos, netotic cell death, lysosomal dependent cell death, alkaliptosis or oxeiptosis, which are possibly involved in DCM. Drugs or compounds targeting the signals involved in cell death have been used in clinics or experiments to treat DCM. This review briefly summarizes the mechanisms and implications of cell death in DCM, which is beneficial to improve the understanding of cell death in DCM and may propose novel and ideal strategies in future.

5.
Exp Dermatol ; 28(7): 776-785, 2019 07.
Article in English | MEDLINE | ID: mdl-30927279

ABSTRACT

Hydrogen sulphide (H2 S) is an important gasotransmitter with several physiological functions. However, the roles and the detailed mechanisms of H2 S on skin wound healing are not known well. In the present study, 129S1/SvImJ mice were intraperitoneally injected with NaHS (50 µmol/kg/d) for 2 weeks. Then, a round wound of 6 mm diameter with depth into the dermis was made. The skin wound area, blood perfusion, superoxide production, malondialdehyde (MDA) levels, total antioxidant capacity (T-AOC), expression of vascular endothelial growth factor (VEGF), dynamin-related protein 1 (DRP1) and optic atrophy 1 (OPA1) were measured. After NaHS (50 µmol/L) pre-administration for 4 hours, cell migration rate, DRP1, OPA1 and α-smooth muscle actin (α-SMA) expression, superoxide production and mitochondrial membrane potential in primary skin fibroblasts were measured. Tube formation in human umbilical vein endothelial cells (HUVECs) and cell migration in human keratinocytes were also measured. The results showed that NaHS pretreatment significantly accelerated wound healing and improved blood flow in the wound after operation. NaHS increased VEGF expression in the wound and promoted tube formation in HUVECs. Meanwhile, NaHS attenuated reactive oxygen species (ROS) production, suppressed MDA level but restored T-AOC in the wound. NaHS also promoted skin fibroblasts migration and α-SMA expression after scratch. Moreover, NaHS alleviated ROS, increased mitochondrial membrane potential, decreased DRP1 but enhanced OPA1 expression in skin fibroblasts after scratch. NaHS also accelerated human keratinocytes migration after scratch. Taken together, exogenous H2 S supplementary accelerated the skin wound healing, which might be related to oxidative stress inhibition and VEGF enhancement.


Subject(s)
Hydrogen Sulfide/pharmacology , Oxidative Stress , Skin/drug effects , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/drug effects , Actins/metabolism , Animals , Antioxidants/metabolism , Cell Movement/drug effects , Dynamins/metabolism , Fibroblasts/drug effects , GTP Phosphohydrolases/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Keratinocytes/drug effects , Male , Malondialdehyde/pharmacology , Mice , Muscle, Smooth/metabolism , RNA Interference , Superoxides/metabolism
6.
J Biochem Mol Toxicol ; 33(2): e22249, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30368983

ABSTRACT

Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4 ) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical-induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild-type (WT) mice. CCl 4 -induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin-related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4 -induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress.


Subject(s)
Carbon Tetrachloride Poisoning , Chemical and Drug Induced Liver Injury , Oxidative Stress/genetics , Sirtuin 3/deficiency , Animals , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Mice , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...