Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
Nat Commun ; 8(1): 80, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724990

ABSTRACT

Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 × 10-8) or suggestively genome wide (p < 2.3 × 10-6). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass.Lean body mass is a highly heritable trait and is associated with various health conditions. Here, Kiel and colleagues perform a meta-analysis of genome-wide association studies for whole body lean body mass and find five novel genetic loci to be significantly associated.


Subject(s)
Genome-Wide Association Study , Thinness/genetics , 17-Hydroxysteroid Dehydrogenases/genetics , ADAMTS Proteins/genetics , Aldehyde Oxidoreductases/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Body Composition , Extracellular Matrix Proteins/genetics , Humans , Insulin Receptor Substrate Proteins/genetics , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Regulatory Elements, Transcriptional , Versicans/genetics
3.
Circulation ; 135(24): 2336-2353, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28461624

ABSTRACT

BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk. METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of <1.0×10-3 (Bonferroni correction for 50 tests). RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P=1.3×10-16) in comparison with 5% in ever-smokers (P=2.5×10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value=8.7×10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.


Subject(s)
Coronary Disease/genetics , Coronary Disease/prevention & control , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Smoking/genetics , ADAMTS7 Protein/genetics , Adult , Aged , Aged, 80 and over , Cells, Cultured , Coronary Disease/epidemiology , Coronary Vessels/pathology , Coronary Vessels/physiology , Female , Gene-Environment Interaction , Genetic Predisposition to Disease/epidemiology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Smoking/adverse effects , Smoking/epidemiology
4.
Int J Epidemiol ; 46(3): 894-904, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28082375

ABSTRACT

Background: Smoking is the strongest environmental risk factor for reduced pulmonary function. The genetic component of various pulmonary traits has also been demonstrated, and at least 26 loci have been reproducibly associated with either FEV 1 (forced expiratory volume in 1 second) or FEV 1 /FVC (FEV 1 /forced vital capacity). Although the main effects of smoking and genetic loci are well established, the question of potential gene-by-smoking interaction effect remains unanswered. The aim of the present study was to assess, using a genetic risk score approach, whether the effect of these 26 loci on pulmonary function is influenced by smoking. Methods: We evaluated the interaction between smoking exposure, considered as either ever vs never or pack-years, and a 26-single nucleotide polymorphisms (SNPs) genetic risk score in relation to FEV 1 or FEV 1 /FVC in 50 047 participants of European ancestry from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) and SpiroMeta consortia. Results: We identified an interaction ( ßint = -0.036, 95% confidence interval, -0.040 to -0.032, P = 0.00057) between an unweighted 26 SNP genetic risk score and smoking status (ever/never) on the FEV 1 /FVC ratio. In interpreting this interaction, we showed that the genetic risk of falling below the FEV /FVC threshold used to diagnose chronic obstructive pulmonary disease is higher among ever smokers than among never smokers. A replication analysis in two independent datasets, although not statistically significant, showed a similar trend in the interaction effect. Conclusions: This study highlights the benefit of using genetic risk scores for identifying interactions missed when studying individual SNPs and shows, for the first time, that persons with the highest genetic risk for low FEV 1 /FVC may be more susceptible to the deleterious effects of smoking.


Subject(s)
Forced Expiratory Volume/genetics , Gene-Environment Interaction , Smoking/epidemiology , Smoking/genetics , Vital Capacity/genetics , Europe , Female , Humans , Linear Models , Male , Middle Aged , Multivariate Analysis , Polymorphism, Single Nucleotide , Risk Assessment , Spirometry
5.
Nat Commun ; 6: 5897, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25631608

ABSTRACT

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (ß=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (ß=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (ß=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (ß=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Exome/genetics , Fasting/blood , Genetic Predisposition to Disease , Genetic Variation , Mutation Rate , Oligonucleotide Array Sequence Analysis , Black People/genetics , Diabetes Mellitus, Type 2/blood , Genetic Association Studies , Genetic Loci , Glucagon-Like Peptide-1 Receptor/genetics , Glucose-6-Phosphatase/genetics , Humans , Insulin/blood , Polymorphism, Single Nucleotide/genetics , White People/genetics
6.
Nature ; 466(7307): 707-13, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20686565

ABSTRACT

Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.


Subject(s)
Genetic Loci/genetics , Genome-Wide Association Study , Lipid Metabolism/genetics , Lipids/blood , Black or African American/genetics , Animals , Asian People/genetics , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Coronary Artery Disease/blood , Coronary Artery Disease/genetics , Coronary Artery Disease/therapy , Europe/ethnology , Female , Genotype , Humans , Liver/metabolism , Male , Mice , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Protein Phosphatase 1/genetics , Protein Phosphatase 1/metabolism , Reproducibility of Results , Triglycerides/blood , White People/genetics , Polypeptide N-acetylgalactosaminyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...