Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Theor Popul Biol ; 150: 1-13, 2023 04.
Article in English | MEDLINE | ID: mdl-36863578

ABSTRACT

Transposable elements (TEs) are self-reproducing selfish DNA sequences that can invade the genome of virtually all living species. Population genetics models have shown that TE copy numbers generally reach a limit, either because the transposition rate decreases with the number of copies (transposition regulation) or because TE copies are deleterious, and thus purged by natural selection. Yet, recent empirical discoveries suggest that TE regulation may mostly rely on piRNAs, which require a specific mutational event (the insertion of a TE copy in a piRNA cluster) to be activated - the so-called TE regulation "trap model". We derived new population genetics models accounting for this trap mechanism, and showed that the resulting equilibria differ substantially from previous expectations based on a transposition-selection equilibrium. We proposed three sub-models, depending on whether or not genomic TE copies and piRNA cluster TE copies are selectively neutral or deleterious, and we provide analytical expressions for maximum and equilibrium copy numbers, as well as cluster frequencies for all of them. In the full neutral model, the equilibrium is achieved when transposition is completely silenced, and this equilibrium does not depend on the transposition rate. When genomic TE copies are deleterious but not cluster TE copies, no long-term equilibrium is possible, and active TEs are eventually eliminated after an active incomplete invasion stage. When all TE copies are deleterious, a transposition-selection equilibrium exists, but the invasion dynamics is not monotonic, and the copy number peaks before decreasing. Mathematical predictions were in good agreement with numerical simulations, except when genetic drift and/or linkage disequilibrium dominates. Overall, the trap-model dynamics appeared to be substantially more stochastic and less repeatable than traditional regulation models.


Subject(s)
DNA Transposable Elements , Piwi-Interacting RNA , DNA Transposable Elements/genetics , Genetics, Population , Selection, Genetic , Mutation , Evolution, Molecular
3.
Genome Res ; 31(8): 1366-1380, 2021 08.
Article in English | MEDLINE | ID: mdl-34183453

ABSTRACT

Concepts of evolutionary biology suggest that morphological change may occur by rare punctual but rather large changes, or by more steady and gradual transformations. It can therefore be asked whether genetic changes underlying morphological, physiological, and/or behavioral innovations during evolution occur in a punctual manner, whereby a single mutational event has prominent phenotypic consequences, or if many consecutive alterations in the DNA over longer time periods lead to phenotypic divergence. In the marine teleost, sablefish (Anoplopoma fimbria), complementary genomic and genetic studies led to the identification of a sex locus on the Y Chromosome. Further characterization of this locus resulted in identification of the transforming growth factor, beta receptor 1a (tgfbr1a) gene, gonadal somatic cell derived factor (gsdf), as the main candidate for fulfilling the master sex determining (MSD) function. The presence of different X and Y Chromosome copies of this gene indicated that the male heterogametic (XY) system of sex determination in sablefish arose by allelic diversification. The gsdfY gene has a spatio-temporal expression profile characteristic of a male MSD gene. We provide experimental evidence demonstrating a pivotal role of a transposable element (TE) for the divergent function of gsdfY By insertion within the gsdfY promoter region, this TE generated allelic diversification by bringing cis-regulatory modules that led to transcriptional rewiring and thus creation of a new MSD gene. This points out, for the first time in the scenario of MSD gene evolution by allelic diversification, a single, punctual molecular event in the appearance of a new trigger for male development.


Subject(s)
DNA Transposable Elements , Sex Determination Processes , Animals , Evolution, Molecular , Genomics , Male , Sex Determination Processes/genetics , Y Chromosome
4.
Commun Biol ; 4(1): 104, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483589

ABSTRACT

Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.


Subject(s)
Biological Evolution , Chromosomes, Insect , Genome, Insect , Polydnaviridae/genetics , Wasps/genetics , Animals , Base Sequence , Conserved Sequence , Nudiviridae/genetics , Receptors, Odorant/genetics , Smell , Symbiosis , Synteny , Wasps/virology
5.
Genome Biol Evol ; 12(6): 931-947, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32396626

ABSTRACT

The germlines of metazoans contain transposable elements (TEs) causing genetic instability and affecting fitness. To protect the germline from TE activity, gonads of metazoans produce TE-derived PIWI-interacting RNAs (piRNAs) that silence TE expression. In Drosophila, our understanding of piRNA biogenesis is mainly based on studies of the Drosophila melanogaster female germline. However, it is not known whether piRNA functions are also important in the male germline or whether and how piRNAs are affected by the global genomic context. To address these questions, we compared genome sequences, transcriptomes, and small RNA libraries extracted from entire testes and ovaries of two sister species: D. melanogaster and Drosophila simulans. We found that most TE-derived piRNAs were produced in ovaries and that piRNA pathway genes were strongly overexpressed in ovaries compared with testes, indicating that the silencing of TEs by the piRNA pathway mainly took place in the female germline. To study the relationship between host piRNAs and TE landscape, we analyzed TE genomic features and how they correlate with piRNA production in the two species. In D. melanogaster, we found that TE-derived piRNAs target recently active TEs. In contrast, although Drosophila simulans TEs do not display any features of recent activity, the host still intensively produced silencing piRNAs targeting old TE relics. Together, our results show that the piRNA silencing response mainly takes place in Drosophila ovaries and indicate that the host piRNA response is implemented following a burst of TE activity and could persist long after the extinction of active TE families.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster/genetics , Drosophila simulans/genetics , RNA, Small Interfering/biosynthesis , Animals , Drosophila melanogaster/metabolism , Drosophila simulans/metabolism , Female , Male , Ovary/metabolism , Sex Characteristics , Testis/metabolism
6.
Genome Biol ; 20(1): 187, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31477173

ABSTRACT

BACKGROUND: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.


Subject(s)
Genome, Insect , Genomics , Insect Vectors/genetics , Trypanosoma/parasitology , Tsetse Flies/genetics , Animals , DNA Transposable Elements/genetics , Drosophila melanogaster/genetics , Female , Gene Expression Regulation , Genes, Insect , Genes, X-Linked , Geography , Insect Proteins/genetics , Male , Mutagenesis, Insertional/genetics , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics , Sequence Homology, Amino Acid , Synteny/genetics , Wolbachia/genetics
7.
Behav Genet ; 49(1): 83-98, 2019 01.
Article in English | MEDLINE | ID: mdl-30456532

ABSTRACT

Microbial symbionts are ubiquitous associates of living organisms but their role in mediating reproductive isolation (RI) remains controversial. We addressed this knowledge gap by employing the Drosophila paulistorum-Wolbachia model system. Semispecies in the D. paulistorum species complex exhibit strong RI between each other and knockdown of obligate mutualistic Wolbachia bacteria in female D. paulistorum flies triggers loss of assortative mating behavior against males carrying incompatible Wolbachia strains. Here we set out to determine whether de novo RI can be introduced by Wolbachia-knockdown in D. paulistorum males. We show that Wolbachia-knockdown D. paulistorum males (i) are rejected as mates by wild type females, (ii) express altered sexual pheromone profiles, and (iii) are devoid of the endosymbiont in pheromone producing cells. Our findings suggest that changes in Wolbachia titer and tissue tropism can induce de novo premating isolation by directly or indirectly modulating sexual behavior of their native D. paulistorum hosts.


Subject(s)
Drosophila/microbiology , Reproduction/physiology , Symbiosis/genetics , Animals , Behavior, Animal , Biological Evolution , Drosophila Proteins/metabolism , Female , Male , Reproductive Isolation , Sex Attractants/metabolism , Sex Attractants/physiology , Sexual Behavior, Animal/physiology , Species Specificity , Wolbachia/physiology
8.
Gene ; 679: 65-72, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30171941

ABSTRACT

Transposable elements (TEs) are mobile DNA sequences on genomes. Some elements are able to transpose in somatic cells, a process known as somatic transposition (ST), which has been associated with detrimental biological effects. The mariner-Mos1 element of Drosophila promotes transposition in somatic and germline cells and is an excellent model for studies related to the biological consequence of somatic excision (SE). In this work, we used temperature stress to induce increasing transposition of mariner-Mos1 during different stages of the development of D. simulans, aiming to quantify SE during lifespan. Furthermore, strains of D. melanogaster exhibiting differential expression of mariner-Mos1 were employed for estimating some biological consequences of mariner mobilization. It is shown that SE of mariner-Mos1 was not constant during development; the larval phase had the highest rates while the pupal stage exhibited lower rates, and in the embryonic stage, no difference was detected. SE can be detrimental, as suggested by correlation in SE level and reduction in behavioral activities and embryonic viability. This study showed that mariner-Mos1 SE accumulates during the Drosophila life cycle, and can be involved in detrimental effects.


Subject(s)
DNA Transposable Elements , Drosophila melanogaster/growth & development , Stress, Physiological , Animals , DNA-Binding Proteins/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Phenotype , Temperature , Transposases/genetics
9.
Mol Ecol ; 26(14): 3715-3731, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28401606

ABSTRACT

During colonization of new areas, natural populations have to deal with changing environments, and transposable elements (TEs) can be useful "tools" in the adaptation process as they are major contributor to the structural and functional evolution of genomes. In this general context, the activity (copy number, transcriptional and excision rate) of the mariner mos1 element was estimated in 19 natural populations of D. simulans. It is shown (i) that mos1 expression is always higher and more variable in testes than in ovaries; (ii) that mos1 activity is higher in colonizing populations compared to the sub-Saharan African ones (ancestral populations); (iii) that mos1 variations in transcript levels and copy number are negatively correlated with transcriptional variations of piRNA genes, aubergine and argonaute3. Furthermore, mos1 levels of expression in testes highly contrast with the low expression patterns of ago3. These results strongly suggest that the expression polymorphism of piRNA genes could be responsible for the mos1 variations, first between male and female germlines and second, according to the status of natural populations (colonizing or not). These results provide new perspectives about TEs and piRNA genes co-evolution in Drosophila germlines.


Subject(s)
DNA Transposable Elements , DNA-Binding Proteins/metabolism , Drosophila simulans/genetics , RNA, Small Interfering/genetics , Testis/metabolism , Transposases/metabolism , Africa, Northern , Animals , DNA-Binding Proteins/genetics , Female , Male , Transposases/genetics
10.
Genome Biol Evol ; 9(2): 323-339, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28082605

ABSTRACT

The piggyBac transposable element was originally isolated from the cabbage looper moth, Trichoplusia ni, in the 1980s. Despite its early discovery and specificity compared to the other Class II elements, the diversity and evolution of this superfamily have been only partially analyzed. Two main types of elements can be distinguished: the piggyBac-like elements (PBLE) with terminal inverted repeats, untranslated region, and an open reading frame encoding a transposase, and the piggyBac-derived sequences (PGBD), containing a sequence derived from a piggyBac transposase, and which correspond to domesticated elements. To define the distribution, their structural diversity and phylogenetic relationships, analyses were conducted using known PBLE and PGBD sequences to scan databases. From this data mining, numerous new sequences were characterized (50 for PBLE and 396 for PGBD). Structural analyses suggest that four groups of PBLE can be defined according to the presence/absence of sub-terminal repeats. The transposase is characterized by highly variable catalytic domain and C-terminal region. There is no relationship between the structural groups and the phylogeny of these PBLE elements. The PGBD are clearly structured into nine main groups. A new group of domesticated elements is suspected in Neopterygii and the remaining eight previously described elements have been investigated in more detail. In all cases, these sequences are no longer transposable elements, the catalytic domain of the ancestral transposase is not always conserved, but they are under strong purifying selection. The phylogeny of both PBLE and PGBD suggests multiple and independent domestication events of PGBD from different PBLE ancestors.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Nerve Tissue Proteins/genetics , Transposases/genetics , Animals , Catalytic Domain , Humans , Phylogeny , Repetitive Sequences, Nucleic Acid/genetics
11.
Proc Natl Acad Sci U S A ; 113(51): 14763-14768, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27930288

ABSTRACT

Transposable elements (TEs) are repeated DNA sequences that can constitute a substantial part of genomes. Studying TEs' activity, interactions, and accumulation dynamics is thus of major interest to understand genome evolution. Here, we describe the transposition dynamics of cut-and-paste mariner elements during experimental (short- and longer-term) evolution in Drosophila melanogaster Flies with autonomous and nonautonomous mariner copies were introduced in populations containing no active mariner, and TE accumulation was tracked by quantitative PCR for up to 100 generations. Our results demonstrate that (i) active mariner elements are highly invasive and characterized by an elevated transposition rate, confirming their capacity to spread in populations, as predicted by the "selfish-DNA" mechanism; (ii) nonautonomous copies act as parasites of autonomous mariner elements by hijacking the transposition machinery produced by active mariner, which can be considered as a case of hyperparasitism; (iii) this behavior resulted in a failure of active copies to amplify which systematically drove the whole family to extinction in less than 100 generations. This study nicely illustrates how the presence of transposition-competitive variants can deeply impair TE dynamics and gives clues to the extraordinary diversity of TE evolutionary histories observed in genomes.


Subject(s)
DNA Transposable Elements , Directed Molecular Evolution , Drosophila melanogaster/genetics , Genome, Insect , Animals , DNA-Binding Proteins/genetics , Female , Linear Models , Male , Phenotype , Phylogeny , Polymerase Chain Reaction , Species Specificity , Transposases/genetics
12.
Mol Biol Evol ; 33(4): 1094-109, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26685176

ABSTRACT

Transposable elements (TEs) are genomic repeated sequences that display complex evolutionary patterns. They are usually inherited vertically, but can occasionally be transmitted between sexually independent species, through so-called horizontal transposon transfers (HTTs). Recurrent HTTs are supposed to be essential in life cycle of TEs, which are otherwise destined for eventual decay. HTTs also impact the host genome evolution. However, the extent of HTTs in eukaryotes is largely unknown, due to the lack of efficient, statistically supported methods that can be applied to multiple species sequence data sets. Here, we developed a new automated method available as a R package "vhica" that discriminates whether a given TE family was vertically or horizontally transferred, and potentially infers donor and receptor species. The method is well suited for TE sequences extracted from complete genomes, and applicable to multiple TEs and species at the same time. We first validated our method using Drosophila TE families with well-known evolutionary histories, displaying both HTTs and vertical transmission. We then tested 26 different lineages of mariner elements recently characterized in 20 Drosophila genomes, and found HTTs in 24 of them. Furthermore, several independent HTT events could often be detected within the same mariner lineage. The VHICA (Vertical and Horizontal Inheritance Consistence Analysis) method thus appears as a valuable tool to analyze the evolutionary history of TEs across a large range of species.


Subject(s)
DNA Transposable Elements/genetics , DNA-Binding Proteins/genetics , Drosophila/genetics , Gene Transfer, Horizontal , Transposases/genetics , Animals , Evolution, Molecular , Genetic Variation , Genomics , Phylogeny , Species Specificity
13.
BMC Genomics ; 16: 1061, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26666222

ABSTRACT

BACKGROUND: The Triatomine bug Rhodnius prolixus is a vector of Trypanosoma cruzi, which causes the Chagas disease in Latin America. R. prolixus can also transfer transposable elements horizontally across a wide range of species. We have taken advantage of the availability of the 700 Mbp complete genome sequence of R. prolixus to study the dynamics of invasion and persistence of transposable elements in this species. RESULTS: Using both library-based and de novo methods of transposon detection, we found less than 6 % of transposable elements in the R. prolixus genome, a relatively low percentage compared to other insect genomes with a similar genome size. DNA transposons are surprisingly abundant and elements belonging to the mariner family are by far the most preponderant components of the mobile part of this genome with 11,015 mariner transposons that could be clustered in 89 groups (75 % of the mobilome). Our analysis allowed the detection of a new mariner clade in the R. prolixus genome, that we called nosferatis. We demonstrated that a large diversity of mariner elements invaded the genome and expanded successfully over time via three main processes. (i) several families experienced recent and massive expansion, for example an explosive burst of a single mariner family led to the generation of more than 8000 copies. These recent expansion events explain the unusual prevalence of mariner transposons in the R. prolixus genome. Other families expanded via older bursts of transposition demonstrating the long lasting permissibility of mariner transposons in the R. prolixus genome. (ii) Many non-autonomous families generated by internal deletions were also identified. Interestingly, two non autonomous families were generated by atypical recombinations (5' part replacement with 3' part). (iii) at least 10 cases of horizontal transfers were found, supporting the idea that host/vector relationships played a pivotal role in the transmission and subsequent persistence of transposable elements in this genome. CONCLUSION: These data provide a new insight into the evolution of transposons in the genomes of hematophagous insects and bring additional evidences that lateral exchanges of mobile genetics elements occur frequently in the R. prolixus genome.


Subject(s)
DNA Transposable Elements , Rhodnius/genetics , Animals , Evolution, Molecular , Gene Transfer, Horizontal , Genome Size , Genome, Insect , Phylogeny
14.
PLoS Genet ; 11(9): e1005470, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26379286

ABSTRACT

Bracoviruses are symbiotic viruses associated with tens of thousands of species of parasitic wasps that develop within the body of lepidopteran hosts and that collectively parasitize caterpillars of virtually every lepidopteran species. Viral particles are produced in the wasp ovaries and injected into host larvae with the wasp eggs. Once in the host body, the viral DNA circles enclosed in the particles integrate into lepidopteran host cell DNA. Here we show that bracovirus DNA sequences have been inserted repeatedly into lepidopteran genomes, indicating this viral DNA can also enter germline cells. The original mode of Horizontal Gene Transfer (HGT) unveiled here is based on the integrative properties of an endogenous virus that has evolved as a gene transfer agent within parasitic wasp genomes for ≈100 million years. Among the bracovirus genes thus transferred, a phylogenetic analysis indicated that those encoding C-type-lectins most likely originated from the wasp gene set, showing that a bracovirus-mediated gene flux exists between the 2 insect orders Hymenoptera and Lepidoptera. Furthermore, the acquisition of bracovirus sequences that can be expressed by Lepidoptera has resulted in the domestication of several genes that could result in adaptive advantages for the host. Indeed, functional analyses suggest that two of the acquired genes could have a protective role against a common pathogen in the field, baculovirus. From these results, we hypothesize that bracovirus-mediated HGT has played an important role in the evolutionary arms race between Lepidoptera and their pathogens.


Subject(s)
Genes, Insect , Lepidoptera/parasitology , Polydnaviridae/physiology , Wasps/genetics , Animals , Base Sequence , DNA, Viral , Molecular Sequence Data , Polydnaviridae/genetics , Spodoptera/genetics
15.
Mob DNA ; 6: 13, 2015.
Article in English | MEDLINE | ID: mdl-26244060

ABSTRACT

DNA derived from transposable elements (TEs) constitutes large parts of the genomes of complex eukaryotes, with major impacts not only on genomic research but also on how organisms evolve and function. Although a variety of methods and tools have been developed to detect and annotate TEs, there are as yet no standard benchmarks-that is, no standard way to measure or compare their accuracy. This lack of accuracy assessment calls into question conclusions from a wide range of research that depends explicitly or implicitly on TE annotation. In the absence of standard benchmarks, toolmakers are impeded in improving their tools, annotators cannot properly assess which tools might best suit their needs, and downstream researchers cannot judge how accuracy limitations might impact their studies. We therefore propose that the TE research community create and adopt standard TE annotation benchmarks, and we call for other researchers to join the authors in making this long-overdue effort a success.

16.
BMC Genomics ; 15: 727, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25163909

ABSTRACT

BACKGROUND: The mariner family of transposable elements is one of the most widespread in the Metazoa. It is subdivided into several subfamilies that do not mirror the phylogeny of these species, suggesting an ancient diversification. Previous hybridization and PCR studies allowed a partial survey of mariner diversity in the Metazoa. In this work, we used a comparative genomics approach to access the genus-wide diversity and evolution of mariner transposable elements in twenty Drosophila sequenced genomes. RESULTS: We identified 36 different mariner lineages belonging to six distinct subfamilies, including a subfamily not described previously. Wide variation in lineage abundance and copy number were observed among species and among mariner lineages, suggesting continuous turn-over. Most mariner lineages are inactive and contain a high proportion of damaged copies. We showed that, in addition to substitutions that rapidly inactivate copies, internal deletion is a major mechanism contributing to element decay and the generation of non-autonomous sublineages. Hence, 23% of copies correspond to several Miniature Inverted-repeat Transposable Elements (MITE) sublineages, the first ever described in Drosophila for mariner. In the most successful MITEs, internal deletion is often associated with internal rearrangement, which sheds light on the process of MITE origin. The estimation of the transposition rates over time revealed that all lineages followed a similar progression consisting of a rapid amplification burst followed by a rapid decrease in transposition. We detected some instances of multiple or ongoing transposition bursts. Different amplification times were observed for mariner lineages shared by different species, a finding best explained by either horizontal transmission or a reactivation process. Different lineages within one species have also amplified at different times, corresponding to successive invasions. Finally, we detected a preference for insertion into short TA-rich regions, which appears to be specific to some subfamilies. CONCLUSIONS: This analysis is the first comprehensive survey of this family of transposable elements at a genus scale. It provides precise measures of the different evolutionary processes that were hypothesized previously for this family based on PCR data analysis. mariner lineages were observed at almost all "life cycle" stages: recent amplification, subsequent decay and potential (re)-invasion or invasion of genomes.


Subject(s)
DNA Transposable Elements , Drosophila/genetics , Evolution, Molecular , Genome , Genomics , Animals , Cluster Analysis , Computational Biology , Drosophila/classification , Drosophila/metabolism , Gene Deletion , Gene Order , Gene Rearrangement , Gene Silencing , Genetic Variation , Inverted Repeat Sequences , Mutagenesis, Insertional , Phylogeny , Transposases/metabolism
17.
BMC Genomics ; 14: 700, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24118975

ABSTRACT

BACKGROUND: Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. RESULTS: In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. CONCLUSION: Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.


Subject(s)
Computational Biology/methods , DNA Transposable Elements/genetics , Markov Chains , Prokaryotic Cells/metabolism , Archaea/genetics , Bacteria/genetics , Base Sequence , Databases, Nucleic Acid , Genome, Archaeal/genetics , Genome, Bacterial/genetics , Inverted Repeat Sequences/genetics , Metagenome/genetics , Molecular Sequence Data , Reference Standards , Reproducibility of Results
18.
BMC Evol Biol ; 13: 40, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23405862

ABSTRACT

BACKGROUND: Increasing genome data show that introns, a hallmark of eukaryotes, already existed at a high density in the last common ancestor of extant eukaryotes. However, intron content is highly variable among species. The tempo of intron gains and losses has been irregular and several factors may explain why some genomes are intron-poor whereas other are intron-rich. RESULTS: We studied the dynamics of intron gains and losses in an α-amylase gene, whose product breaks down starch and other polysaccharides. It was transferred from an Actinobacterium to an ancestor of Agaricomycotina. This gene underwent further duplications in several species. The results indicate a high rate of intron insertions soon after the gene settled in the fungal genome. A number of these oldest introns, regularly scattered along the gene, remained conserved. Subsequent gains and losses were lineage dependent, with a majority of losses. Moreover, a few species exhibited a high number of both specific intron gains and losses in recent periods. There was little sequence conservation around insertion sites, then probably little information for splicing, whereas splicing sites, inside introns, showed typical and conserved patterns. There was little variation of intron size. CONCLUSIONS: Since most Basidiomycetes have intron-rich genomes and this richness was ancestral in Fungi, long before the transfer event, we suggest that the new gene was shaped to comply with requirements of the splicing machinery, such as short exon and intron sizes, in order to be correctly processed.


Subject(s)
Basidiomycota/genetics , Gene Transfer, Horizontal , Genes, Bacterial , Introns , alpha-Amylases/genetics , Bayes Theorem , Consensus Sequence , DNA, Fungal/genetics , Evolution, Molecular , Genome, Fungal , RNA Splicing , Sequence Analysis, DNA
19.
Genome Biol Evol ; 5(1): 77-86, 2013.
Article in English | MEDLINE | ID: mdl-23275488

ABSTRACT

The impact of transposable elements (TEs) on genome structure, plasticity, and evolution is still not well understood. The recent availability of complete genome sequences makes it possible to get new insights on the evolutionary dynamics of TEs from the phylogenetic analysis of their multiple copies in a wide range of species. However, this source of information is not always fully exploited. Here, we show how the history of transposition activity may be qualitatively and quantitatively reconstructed by considering the distribution of transposition events in the phylogenetic tree, along with the tree topology. Using statistical models developed to infer speciation and extinction rates in species phylogenies, we demonstrate that it is possible to estimate the past transposition rate of a TE family, as well as how this rate varies with time. This methodological framework may not only facilitate the interpretation of genomic data, but also serve as a basis to develop new theoretical and statistical models.


Subject(s)
DNA Transposable Elements/genetics , Evolution, Molecular , Computer Simulation , Extinction, Biological , Models, Genetic , Models, Statistical , Phylogeny
20.
J Mol Evol ; 73(3-4): 230-43, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22094890

ABSTRACT

The recent availability of genome sequences of four different Fusarium species offers the opportunity to perform extensive comparative analyses, in particular of repeated sequences. In a recent work, the overall content of such sequences in the genomes of three phylogenetically related Fusarium species, F. graminearum, F. verticillioides, and F. oxysporum f. sp. lycopersici has been estimated. In this study, we present an exhaustive characterization of pogo-like elements, named Fots, in four Fusarium genomes. Overall 10 Fot and two Fot-related miniature inverted-repeat transposable element families were identified, revealing a diversification of multiple lineages of pogo-like elements, some of which accompanied by a gain of introns. This analysis also showed that such elements are present in an unusual high proportion in the genomes of F. oxysporum f. sp. lycopersici and Nectria haematococca (anamorph F. solani f. sp. pisi) in contrast with most other fungal genomes in which retroelements are the most represented. Interestingly, our analysis showed that the most numerous Fot families all contain potentially active or mobilisable copies, thus conferring a mutagenic potential of these transposable elements and consequently a role in strain adaptation and genome evolution. This role is strongly reinforced when examining their genomic distribution which is clearly biased with a high proportion (more than 80%) located on strain- or species-specific regions enriched in genes involved in pathogenicity and/or adaptation. Finally, the different reproductive characteristics of the four Fusarium species allowed us to investigate the impact of the process of repeat-induced point mutations on the expansion and diversification of Fot elements.


Subject(s)
DNA Transposable Elements/genetics , Fusarium/genetics , Genome, Fungal , Base Sequence , Cluster Analysis , Evolution, Molecular , Gene Dosage , Likelihood Functions , Models, Genetic , Multigene Family , Open Reading Frames , Phylogeny , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...