Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; 13(13): e2303217, 2024 05.
Article in English | MEDLINE | ID: mdl-38363057

ABSTRACT

Osteochondral defects are often accompanied by excessive reactive oxygen species (ROS) caused by osteoarthritis or acute surgical inflammation. An inflammatory environment containing excess ROS will not only hinder tissue regeneration but also impact the quality of newly formed tissues. Therefore, there is an urgent need to develop scaffolds with both ROS scavenging and osteochondral repair functions to promote and protect osteochondral tissue regeneration. In this work, by using 3D printing technology, a composite scaffold based on cobalt-incorporated chloroapatite (Co-ClAP) bioceramics, which possesses ROS-scavenging activity and can support cell proliferation, adhesion, and differentiation, is developed. Benefiting from the catalytic activity of Co-ClAP bioceramics, the composite scaffold can protect cells from oxidative damage under ROS-excessive conditions, support their directional differentiation, and simultaneously mediate an anti-inflammatory microenvironment. In addition, it is also confirmed by using rabbit osteochondral defect model that the Co-ClAP/poly(lactic-co-glycolic acid) scaffold can effectively promote the integrated regeneration of cartilage and subchondral bone, exhibiting an ideal repair effect in vivo. This study provides a promising strategy for the treatment of defects with excess ROS and inflammatory microenvironments.


Subject(s)
Bone Regeneration , Ceramics , Cobalt , Printing, Three-Dimensional , Tissue Scaffolds , Animals , Rabbits , Tissue Scaffolds/chemistry , Cobalt/chemistry , Ceramics/chemistry , Ceramics/pharmacology , Bone Regeneration/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Reactive Oxygen Species/metabolism , Antioxidants/chemistry , Antioxidants/pharmacology , Tissue Engineering/methods , Cell Proliferation/drug effects , Apatites/chemistry , Cell Differentiation/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism
2.
ACS Appl Bio Mater ; 7(1): 429-442, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38171011

ABSTRACT

Hemorrhage and infection after emergency trauma are two main factors that cause deaths. It is of great importance to instantly stop bleeding and proceed with antibacterial treatment for saving lives. However, there is still a huge need and challenge to develop materials with functions of both rapid hemostasis and effective antibacterial therapy. Herein, we propose the fabrication of a composite aerogel mainly consisting of mesoporous bioactive glass (MBG) and graphene oxide (GO) through freeze-drying. This composite aerogel has a three-dimensional porous structure, high absorption, good hydrophilicity, and negative zeta potential. Moreover, it exhibits satisfactory hemostatic activities including low BCI, good hemocompatibility, and activation of intrinsic pathways. When applied to rat liver injury bleeding, it can decrease 60% hemostasis time and 75% blood loss amount compared to medical gauze. On the other hand, the composite aerogel shows excellent photothermal antibacterial capacity against Staphylococcus aureus and Escherichia coli. Animal experiments further verify that this composite aerogel can effectively kill bacteria in wound sites via photothermal treatment and promote wound healing. Hence, this MBG-GO composite aerogel makes a great choice for the therapy of emergency trauma with massive hemorrhage and bacterial infection.


Subject(s)
Graphite , Hemostatics , Rats , Animals , Hemostatics/pharmacology , Hemostatics/therapeutic use , Hemostasis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/chemistry , Hemorrhage
3.
Adv Healthc Mater ; 12(32): e2302054, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37842937

ABSTRACT

Silicon (Si)-based biomaterials are widely applied for bone regeneration. However, the underlying mechanisms of the materials function remain largely unknown. T lymphocyte-mediated adaptive immune response plays a vital role in the process of bone regeneration. In the current study, mesoporous silica (MS) is used as a model material of Si-based biomaterials. It shows that the supernatant of CD4+ T lymphocytes pretreated with MS extract significantly promotes the vascularized bone regeneration. The potential mechanism is closely related to the fact that MS extract can reduce the expression of regulatory factor X-1 (RFX-1) in CD4+ T lymphocytes. This may result in the overexpression of interleukin-17A (IL-17A) by boosting histone H3 acetylation and lowering DNA methylation and H3K9 trimethylation. Importantly, the in vivo experiments further reveal that MS particles significantly enhance bone regeneration with improved angiogenesis in the critical-sized calvarial defect mouse model accompanied by upregulation of IL-17A in peripheral blood and the proportion of Th17 cells. This study suggests that modulation of the adaptive immune response of T lymphocytes by silicate-based biomaterials plays an important role for bone regeneration.


Subject(s)
Osteogenesis , Silicon , Mice , Animals , Silicon/pharmacology , Biocompatible Materials/pharmacology , Interleukin-17 , Epigenesis, Genetic , Angiogenesis , T-Lymphocytes , Bone Regeneration , Silicon Dioxide/pharmacology , Adaptive Immunity
4.
Nano Lett ; 23(15): 7157-7165, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37498773

ABSTRACT

Considering the challenge in the treatment of severe breast tumor patients, xonotlite nanowire-containing bioactive scaffolds (Fe3O4-CS-GelMA) were fabricated by the 3D-printing technique for the therapy of injured adipose tissue after surgery. Importantly, benefiting from the excellent magnetothermal performance of Fe3O4 microspheres, Fe3O4-CS-GelMA scaffolds could effectively kill tumor cells in vitro and suppress breast cancer in vivo under an alternating magnetic field, and the tumor did not recur in 2 weeks. In addition, attributed to the released bioactive inorganic ions, Fe3O4-CS-GelMA composite scaffolds could effectively promote the expression of adipogenesis-related genes and proteins of adipose-derived stem cells (ADSCs) via the PI3K-AKT signaling pathway in vitro. Furthermore, Fe3O4-CS-GelMA scaffolds with ADSCs could obviously stimulate the formation of adipose in vivo, compared with that of pure GelMA without inorganic components. Therefore, this study offers a promising strategy for the therapy of breast tumors after the surgical excision of breast carcinoma.


Subject(s)
Breast Neoplasms , Nanowires , Humans , Female , Tissue Scaffolds , Osteogenesis , Cell Differentiation , Breast Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Nanowires/therapeutic use , Printing, Three-Dimensional , Adipose Tissue , Tissue Engineering/methods
5.
Adv Sci (Weinh) ; 10(21): e2301309, 2023 07.
Article in English | MEDLINE | ID: mdl-37119499

ABSTRACT

Tendon-to-bone interface has a hierarchical structure and gradient component that are conducive to distributing the stresses to achieve movement. Conventional biomaterials lack the capacity to induce synchronous repair of multiple tissues, resulting in the failure of the interface repair. Biomimetic strategies have attracted enormous attention in the field of complex structure regeneration because they can meet the different physiological requirements of multiple tissues. Herein, a biomimetic ink mimicking tendon/bone tissues is developed by combining tendon/bone-related cells and Mo-containing silicate (MS) bioceramics. Subsequently, biomimetic multicellular scaffolds are fabricated to achieve the simulation of the hierarchical structure and cellular composition of tendon-to-bone interfaces by the spatial distribution of the biomimetic inks via 3D bioprinting, which is of great significance for inducing the regeneration of complex structures in the interface region. In addition, attributed to the desirable ionic microenvironment created by MS bioceramics, the biomimetic scaffolds possess the dual function of inducing tendon/bone-related cells tenogenic and osteogenic differentiation in vitro, and promote the integrated regeneration of tendon-to-bone interfaces in vivo. The study offers a feasible strategy to construct biomimetic multicellular scaffolds with bifunction for inducing multi-lineage tissue regeneration, especially for regenerating soft-to-hard tissue interfaces.


Subject(s)
Bioprinting , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Osteogenesis , Ink , Biomimetics , Bone Regeneration , Tendons
6.
Adv Sci (Weinh) ; 10(13): e2206875, 2023 05.
Article in English | MEDLINE | ID: mdl-36828785

ABSTRACT

Osteoarthritis (OA) is a degenerative disease that often causes cartilage lesions and even osteochondral damage. Osteochondral defects induced by OA are accompanied by an inflammatory arthrosis microenvironment with overproduced reactive oxygen species (ROS), resulting in the exacerbation of defects and difficulty regenerating osteochondral tissues. Therefore, it is urgently needed to develop osteochondral scaffolds that can not only promote the integrated regeneration of cartilage and subchondral bone, but also possess ROS-scavenging ability to protect tissues from oxidative stress. Herein, zinc-cobalt bimetallic organic framework (Zn/Co-MOF) functionalized bioceramic scaffolds are designed for repairing osteochondral defects under OA environment. By functionalizing Zn/Co-MOF on the 3D-printed beta-tricalcium phosphate (ß-TCP) scaffolds, the Zn/Co-MOF functionalized ß-TCP (MOF-TCP) scaffolds with broad-spectrum ROS-scavenging ability are successfully developed. Benefiting from its catalytic active sites and degradation products, Zn/Co-MOF endows the scaffolds with excellent antioxidative and anti-inflammatory properties to protect cells from ROS invasion, as well as dual-bioactivities of simultaneously inducing osteogenic and chondrogenic differentiation in vitro. Furthermore, in vivo results confirm that MOF-TCP scaffolds accelerate the integrated regeneration of cartilage and subchondral bone in severe osteochondral defects. This study offers a promising strategy for treating defects induced by OA as well as other inflammatory diseases.


Subject(s)
Metal-Organic Frameworks , Tissue Scaffolds , Tissue Scaffolds/chemistry , Metal-Organic Frameworks/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species
7.
Adv Healthc Mater ; 12(13): e2201923, 2023 05.
Article in English | MEDLINE | ID: mdl-36748277

ABSTRACT

For regeneration of highly vascularized and innervated tissues, like bone, simultaneous ingrowth of blood vessels and nerves is essential but largely neglected. To address this issue, a "pre-angiogenic" cell-laden scaffold with durable angiogenic functions is prepared according to the bioactivities of silicate bioceramics and the instructive effects of vascular cells on neurogenesis and bone repair. Compared with traditional cell-free scaffolds, the prepared cell-laden scaffolds printed with active cells and bioactive inks can support long-term cell survival and growth for three weeks. The long-lived scaffolds exhibited durable angiogenic capability both in vitro and in vivo. The pre-angiogenic scaffolds can induce the neurogenetic differentiation of neural cells and the osteogenic differentiation of mesenchymal stem cells by the synergistic effects of released bioactive ions and the ability of vascular cells to attract neurons. The enhanced bone regeneration with both vascularization and innervation is attributed to these physiological functions of the pre-angiogenic cell-laden scaffolds, which is defined as "vascular-innervated" bone regeneration. It is suggested that the concept of "vascular-innervated scaffolds" may represent the future direction of biomaterials for complex tissue/organ regeneration.


Subject(s)
Osteogenesis , Tissue Scaffolds , Bone Regeneration/physiology , Biocompatible Materials/pharmacology , Bone and Bones , Cell Differentiation , Tissue Engineering , Printing, Three-Dimensional
8.
Bioact Mater ; 24: 81-95, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36582348

ABSTRACT

A nanocomposite microneedle (ZCQ/MN) patch containing copper/zinc dual-doped mesoporous silica nanoparticles loaded with quercetin (ZCQ) was developed as a combination therapy for androgenic alopecia (AGA). The degradable microneedle gradually dissolves after penetration into the skin and releases the ZCQ nanoparticles. ZCQ nanoparticles release quercetin (Qu), copper (Cu2+) and zinc ions (Zn2+) subcutaneously to synergistically promote hair follicle regeneration. The mechanism of promoting hair follicle regeneration mainly includes the regulation of the main pathophysiological phenomena of AGA such as inhibition of dihydrotestosterone, inhibition of inflammation, promotion of angiogenesis and activation of hair follicle stem cells by the combination of Cu2+ and Zn2+ ions and Qu. This study demonstrates that the systematic intervention targeting different pathophysiological links of AGA by the combination of organic drug and bioactive metal ions is an effective treatment strategy for hair loss, which provides a theoretical basis for development of biomaterial based anti-hair loss therapy.

9.
Biofabrication ; 14(3)2022 04 22.
Article in English | MEDLINE | ID: mdl-35417888

ABSTRACT

Bioceramics are widely used in bone tissue repair and regeneration due to their desirable biocompatibility and bioactivity. However, the brittleness of bioceramics results in difficulty of surgical operation, which greatly limits their clinical applications. The spicules of the marine spongeEuplectella aspergillum(Ea) possess high flexibility and fracture toughness resulting from concentric layered silica glued by a thin organic layer. Inspired by the unique properties of sponge spicules, flexible bioceramic-based scaffolds with spicule-like concentric layered biomimetic microstructures were constructed by combining two-dimensional (2D) bioceramics and 3D printing. 2D bioceramics could be assembled and aligned by modulating the shear force field in the direct ink writing (DIW) of 3D printing. The prepared spicules-inspired flexible bioceramic-based (SFB) scaffolds differentiated themselves from traditional 3D-printed irregular particles-based bioceramic-based scaffolds as they could be adaptably compressed, cut, folded, rolled and twisted without the occurrence of fracture, significantly breaking through the bottleneck of inherent brittleness of traditional bioceramic scaffolds. In addition, SFB scaffolds showed significantly enhancedin vitroandin vivobone-forming bioactivity as compared to conventional ß-tricalcium phosphate (ß-TCP) scaffolds, suggesting that SFB scaffolds combined both of excellent mechanical and bioactive characteristics, which is believed to greatly promote the bioceramic science and their clinical applications.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Printing, Three-Dimensional , Silicon Dioxide , Tissue Engineering/methods , Tissue Scaffolds/chemistry
10.
Dent Mater J ; 41(1): 27-36, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34408120

ABSTRACT

This study aimed to investigate the effects of silicates on the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs) in vitro. HDPCs were cultured in the presence of calcium silicate (CS) extracts, while calcium hydroxide (CH) extracts and culture medium without CH or CS were used as the control groups. The calcium and phosphorus ion concentrations in the CS were similar to those in the control groups, but the concentration of silicon ions in the CS extracts was higher than that in the control groups. HDPCs cultured with CS and CH extracts at dilution of 1/128 proliferated significantly more than those cultured with the control treatments. CS extracts promoted cell migration, enhanced the expression of odontogenic marker genes and conspicuously increased odontogenesis-related protein production and the release of cytokines, suggesting that CS bioactive ceramics possess excellent biocompatibility and bioactivity and have the potential for application as pulp-capping agents.


Subject(s)
Dental Pulp , Silicates , Calcium Compounds/pharmacology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Silicates/pharmacology
11.
Biofabrication ; 13(4)2021 08 13.
Article in English | MEDLINE | ID: mdl-34340226

ABSTRACT

Elimination of residual osteosarcoma cells and repair of bone defects remain major challenges for osteosarcoma in clinic. To address this problem, it is required that multifunctional therapeutic platform possess high tumor-killing efficiency and simultaneous bone regeneration capabilities. In this work, an intelligent therapeutic platform was developed to achieve highly-efficient tumor therapy and simultaneous significantly improved bone defect repairing ability, which was realized byin situgrowing ferromagnetic Fe3S4layers with tuned microstructures on the surface of 3D-printed akermanite bioceramic scaffolds via hydrothermal method. The Fe3S4layers exploited magnetic thermal energy to enhance chemodynamic treatment, thus achieving a synergistic effect between magnetothermal and chemodynamic therapy on the elimination of residual tumor cells. Moreover, the micro-structured surface of the 3D-printed bioceramic scaffolds further enhanced the osteogenic activityin vitroand accelerated the bone regenerationin vivo. The scaffolds with multi-mode tumor-killing and bone repairing capabilities indicated that such a therapeutic platform is applicable for a stepwise treatment strategy of osteosarcoma and provides inspiration for the design of multifunctional biomaterials.


Subject(s)
Bone Neoplasms , Tissue Scaffolds , Biocompatible Materials , Bone Neoplasms/drug therapy , Bone Regeneration , Humans , Osteogenesis , Printing, Three-Dimensional
12.
J Mater Chem B ; 9(21): 4355-4364, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34013948

ABSTRACT

Although calcium phosphate cements (CPCs) have been clinically used to repair bone defects caused by bone tumor resection, traditional CPCs cannot kill the remaining tumor cells after surgery and prevent cancer recurrence. In this study, a multifunctional injectable metal-organic framework (MOF) cobalt coordinated tetrakis(4-carboxyphenyl)porphyrin (Co-TCPP)-modified calcium phosphate cement (Co-TCPP/CPC) was prepared for the minimally invasive treatment of neoplastic bone defects. The incorporation of Co-TCPP not only retained the good injectability of bone cements, but also shortened the setting time, improved the compressive strength, and endowed them with excellent photothermal properties. The hyperthermia effect induced by the presence of Co-TCPP well induced the therapeutic effect against bone tumors both in vitro and in vivo. Moreover, Co-TCPP/CPC exhibited desirable osteogenesis and angiogenesis by promoting bone and vascular regeneration in vivo. Therefore, the Co-TCPP composite bone cement demonstrated its great potential for bone tumor therapy and tissue regeneration, representing a multifunctional biomaterial for the treatment of neoplastic bone defects.


Subject(s)
Bone Cements , Bone Regeneration , Neoplasms/pathology , Biocompatible Materials , Humans
13.
Ann Transl Med ; 9(1): 39, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33553332

ABSTRACT

BACKGROUND: Given their highly adjustable and predictable properties, three-dimensional(3D) printed geometrically ordered porous biomaterials offer unique opportunities as orthopedic implants. The performance of such biomaterials is, however, as much a result of the surface properties of the struts as it is of the 3D porous structure. In our previous study, we have investigated the in vitro performances of selective laser melted (SLM) Ti-6Al-4V scaffolds which are surface modified by the bioactive glass (BG) and mesoporous bioactive glass (MBG), respectively. The results demonstrated that such modification enhanced the attachment, proliferation, and differentiation of human bone marrow stromal cells (hBMSC). Here, we take the next step by assessing the therapeutic potential of 3D printed Ti-6Al-4V scaffolds with BG and MBG surface modifications for bone regeneration in a rabbit bone defect model. METHODS: 3D printed Ti-6Al-4V scaffolds with BG and MBG surface modifications were implanted into the femoral condyle of the rabbits, the Ti-6Al-4V scaffolds without surface modification were used as the control. At week 3, 6, and 9 after the implantation, micro-computed tomography (micro-CT) imaging, fluorescence double-labeling to determine the mineral apposition rate (MAR), and histological analysis of non-decalcified sections were performed. RESULTS: We found significantly higher volumes of regenerated bone, significantly higher values of the relevant bone morphometric parameters, clear signs of bone matrix apposition and maturation, and the evidence of progressed angiogenesis and blood vessel formation in the groups where the bioactive glass was added as a coating, particularly the MGB group. CONCLUSIONS: The MBG coating resulted in enhanced osteoconduction and vascularization in bone defect healing, which was attributed to the release of silicon and calcium ions and the presence of a nano-mesoporous structure on the surface of the MBG specimens.

14.
Bioact Mater ; 6(7): 1910-1920, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33364530

ABSTRACT

The deep burn skin injures usually severely damage the dermis with the loss of hair follicle loss, which are difficult to regenerate. Furthermore, severe burns often accompanied with large amount of wound exudates making the wound moist, easily infected, and difficult to heal. Therefore, it is of great clinical significance to develop wound dressings to remove wound exudates and promote hair follicle regeneration. In this study, a sandwich-structured wound dressing (SWD) with Janus membrane property was fabricated by hot compression molding using hydrophilic zinc silicate bioceramics (Hardystonite, ZnCS) and hydrophobic polylactic acid (PLA). This unique organic/inorganic Janus membrane structure revealed excellent exudate absorption property and effectively created a dry wound environment. Meanwhile, the incorporation of ZnCS bioceramic particles endowed the dressing with the bioactivity to promote hair follicle regeneration and wound healing through the release of Zn2+ and SiO3 2- ions, and this bioactivity of the wound dressing is mainly attributed to the synergistic effect of Zn2+ and SiO3 2- to promote the recruitment, viability, and differentiation of hair follicle cells. Our study demonstrates that the utilization of the Janus membrane and synergistic effect of different type bioactive ions are effective approaches for the design of wound dressings for burn wound healing.

15.
Nanoscale ; 12(31): 16474-16488, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32743625

ABSTRACT

The immunomodulatory capability of biomaterials is of paramount importance for successful material-mediated bone regeneration. Particularly, the design of surface nano-topography can be leveraged to instruct immune reactions, yet the understanding of such "nano-morphology effect" is still very limited. Herein, highly ordered nano-concave pit (denoted as NCPit) and nano-convex dot (denoted as NCDot) microarrays with two different sizes were successfully constructed on a 316LSS surface via anodization and subsequently immersion-coating treatment, respectively. We, for the first time, comparatively investigated the interactions of NCPit and NCDot microarrays with RAW264.7 macrophages and their immunomodulatory impacts on osteogenesis and angiogenesis of human bone mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs). NCDot microarrays induced macrophages towards M2 polarization with the higher expression level of anti-inflammatory markers (IL-10 and CD 206) and the lower level of pro-inflammatory markers (TNF-α, IL-1ß, IL-6 and CD 86) than those of the corresponding NCPit microarrays. During the process, the expressions of osteogenesis-related genes (Runx2, OPN and OCN) of hBMSCs, and angiogenesis-related genes (eNOS, HIF-1α, KDR and VEGF) of HUVECs were significantly upregulated by the NCDot microarray-modulating immune microenvironment of macrophages, and finally stimulated osteogenesis and angiogenesis. Thus, the prepared NCDot arrays were able to significantly promote osteo-/angiogenic activity by generating a more suitable immune microenvironment than NCPit arrays, offering substantial evidence for designing immunomodulatory biomaterials with specific microstructures and optimal bioactivity.


Subject(s)
Coated Materials, Biocompatible/chemistry , Immunomodulation , Neovascularization, Physiologic/immunology , Osteogenesis/immunology , Animals , Cell Differentiation , Cells, Cultured , Human Umbilical Vein Endothelial Cells/cytology , Humans , Macrophages/cytology , Macrophages/immunology , Mesenchymal Stem Cells/cytology , Mice , RAW 264.7 Cells , Surface Properties
16.
ACS Appl Mater Interfaces ; 12(28): 31255-31269, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32530593

ABSTRACT

Quick and effective sterilization of drug-resistant bacteria inevitably became an ever-growing global challenge. In this study, a multifunctional composite (PDA/Cu-CS) hydrogel mainly composed of polydopamine (PDA) and copper-doped calcium silicate ceramic (Cu-CS) was prepared. It was confirmed that PDA/copper (PDA/Cu) complexing in the composite hydrogel played a key role in enhancing the photothermal performance and antibacterial activity. Through a unique "hot ions effect", created by the heating of Cu ions through the photothermal effect of the composite hydrogel, the hydrogel showed high-efficiency, quick, and long-term inhibition of methicillin-resistant Staphylococcus aureus and Escherichia coli. In addition, the hydrogel possessed remarkable bioactivity to stimulate angiogenesis. The in vivo results confirmed that the "hot ions effect" of the composite hydrogel removed existing infection in the wound area efficiently and significantly promoted angiogenesis and collagen deposition during infectious skin wound healing. Our results suggested that the design of multifunctional hydrogels with "hot ions effect" may be an effective therapeutic approach for the treatment of infectious wounds.


Subject(s)
Anti-Bacterial Agents/chemistry , Calcium Compounds/chemistry , Hydrogels/chemistry , Silicates/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Calcium Compounds/pharmacology , Copper/chemistry , Escherichia coli/drug effects , Indoles/chemistry , Polymers/chemistry , Silicates/pharmacology , Staphylococcus aureus/drug effects , Wound Healing/drug effects , Wound Infection/drug therapy
17.
ACS Appl Mater Interfaces ; 12(11): 12489-12499, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32118402

ABSTRACT

In deep burn injuries, the dermis of the skin is often severely damaged, and hair follicles are also lost and lose the potential for regeneration. Therefore, the development of wound dressings that promote hair follicle regeneration has important clinical significance. In this study, inspired by an ancient Chinese medicine prescription, a novel fibrous membrane (P/Qu/Cup; P, PCL; Qu, quercetin; Cup, cuprorivaite, CaCuSi4O10) containing quercetin-copper (Qu-Cu) chelates was fabricated by using quercetin and a highly bioactive bioceramic (CaCuSi4O10) incorporated in PCL/gelatin electrospun fibers. The fibrous membrane can effectively release Qu and Cu ions to induce proliferation, migration, and differentiation of skin and hair follicle related cells, and the Qu, Cu ions, and Si ions released from the composite membrane revealed synergistic activity to stimulate hair follicle regeneration and wound healing. Our study demonstrated that the analysis of the common components in ancient Chinese prescription is an effective approach to design novel bioactive materials for regenerative medicine.


Subject(s)
Biocompatible Materials , Burns , Hair Follicle/drug effects , Regeneration/drug effects , Animals , Bandages , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Copper/chemistry , Copper/pharmacology , Dermis/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Medicine, Chinese Traditional , Quercetin/chemistry , Quercetin/pharmacology , Rats , Rats, Sprague-Dawley , Silicates/chemistry , Silicates/pharmacology
18.
Biofabrication ; 12(2): 025005, 2020 01 31.
Article in English | MEDLINE | ID: mdl-31756727

ABSTRACT

After surgical resection for a bone tumor, the uncleared bone tumor cells can multiply and cause recurrence of the bone tumor. It is worthwhile to design a scaffold that kills the remaining bone tumor cells and repairs bone defects that were given rise to by surgical resection. Additionally, it is extremely important to consider the function of angiogenesis in the process of bone regeneration because the newly formed blood vessels can offer the nutrients for bone regeneration. In this work, a novel metal-organic framework Cu-TCPP nanosheets interface-structured ß-tricalcium phosphate (TCP) (Cu-TCPP-TCP) scaffold was successfully prepared through integrating a 3D-printing technique with an in-situ growth method in a solvothermal system. Owing to the excellent photothermal effect of Cu-TCPP nanosheets, Cu-TCPP-TCP scaffolds that were illuminated by near-infrared (NIR) light demonstrated photothermal performance, which was well regulated through varying the contents of Cu-TCPP nanosheets, and the ambient humidity and power density of NIR light. When cultured with osteosarcoma cells, Cu-TCPP-TCP scaffolds killed a significant quantity of osteosarcoma cells through released heat energy after exposure to NIR light with power density 1.0 W cm-2 and duration 10 min. Similarly, Cu-TCPP-TCP scaffolds ablated subcutaneous bone tumor tissues on the backs of naked mice and suppressed their growth because of the heat energy transformed from NIR light. I n-vitro studies found that Cu-TCPP-TCP scaffolds ably supported the attachments of both human bone marrow stromal cells (HBMSCs) and human umbilical vein endothelial cells (HUVECs), and significantly stimulated expressions of osteogenesis differentiation-related genes in HBMSCs and angiogenesis differentiation-related genes in HUVECs. After implanting Cu-TCPP-TCP scaffolds into the bone defects of rabbits, they effectively promoted bone regeneration. Thus, the integration of the bone-forming bioactivity of TCP scaffolds with the photothermal properties of Cu-TCPP nanosheets and angiogenesis activity of Cu ions makes Cu-TCPP-TCP scaffolds multifunctional, representing a new horizon to develop biomaterials for simultaneously curing bone tumors and repairing bone defects.


Subject(s)
Bone Neoplasms/therapy , Mesenchymal Stem Cells/cytology , Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Osteosarcoma/therapy , Tissue Scaffolds/chemistry , Animals , Bioprinting , Bone Neoplasms/physiopathology , Bone Regeneration , Bone Transplantation , Calcium Phosphates/chemistry , Cell Proliferation , Copper/chemistry , Humans , Mice , Mice, Inbred BALB C , Neovascularization, Physiologic , Osteosarcoma/physiopathology , Printing, Three-Dimensional , Rabbits , Tissue Engineering
19.
Materials (Basel) ; 12(14)2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31311147

ABSTRACT

Incorporating Sr element in biomaterials for bone implants is an effective way to improve their biological performance, as Sr element has been proved to enhance bone regeneration and depress bone resorption activity. In the present study, we developed a Sr-incorporated dicalcium silicate (C2S) bone cement as a potential candidate for bioactive self-setting bone cement in orthopaedics and stomatology. The Sr-C2S powders containing 0.3-6.8% Sr in molar ratio were prepared by means of chemical co-precipitation, and the results of XRD analysis indicated the incorporation of Sr element into the lattice of C2S. Sr-C2S bone cements, as prepared by mixing the powders with water, have a final setting time of 570 to 594 min, and compressive strength higher than that of C2S bone cement within certain incorporation range. The Sr-C2S bone cements possessed good in vitro bioactivity by inducing apatite formation in simulated body fluid (SBF) within 7 days. Moreover, the proliferation activity of human bone marrow mesenchymal stem cells (hBMSCs) with Sr-C2S bone cements was significantly higher than that with C2S bone cement, and the alkaline phosphatase (ALP) activity of hBMSCs was also enhanced with addition of Sr element in Sr-C2S groups. The Sr-C2S might therefore be a bioactive self-setting material with enhanced biological performance and holds the prospect for application in the bone regeneration area.

20.
Nanoscale ; 11(13): 6315-6333, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30882821

ABSTRACT

Due to the complexity of the skin tissue structure, the regeneration of the entire skin, including skin appendages such as hair follicles, is a big challenge. In addition, skin trauma is often accompanied by bacterial infections that delay the wound healing. Therefore, developing wound dressings, which promote hair follicle regeneration and inhibit bacterial infection in the wound healing process, is of great clinical significance. In this study, Zn doped hollow mesoporous silica nanospheres (HMZS) were synthesized by a sol-gel method and a novel wound healing dressing was prepared by incorporation of drug ciprofloxacin hydrochloride (CiH)-loaded Zn containing mesoporous silica nanospheres (CiH-HMZS) into polycaprolactone (PCL) electrospun fibers. The CiH-HMZS/P nano-composite electrospun fibers exhibit the ability to promote angiogenesis and skin regeneration by releasing Si ions, and the activity to enhance hair follicle regeneration and inhibit bacterial growth by releasing zinc ions and achieve the synergistic antibacterial effect with both Zn ions and CiH in low concentrations. Thus, the CiH-HMZS/P nano-composite membrane is a promising multi-functional wound healing material for inhibiting bacterial growth in infected wounds and enhancing skin wound healing including hair follicle regeneration.


Subject(s)
Anti-Bacterial Agents/chemistry , Hair Follicle/physiology , Nanocomposites/chemistry , Polyesters/chemistry , Silicon Dioxide/chemistry , Wound Healing/drug effects , Zinc/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Cell Proliferation/drug effects , Ciprofloxacin/chemistry , Ciprofloxacin/pharmacology , Drug Carriers/chemistry , Escherichia coli/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Nanocomposites/therapeutic use , Nanocomposites/toxicity , Neovascularization, Physiologic/drug effects , Porosity , Rats , Rats, Sprague-Dawley , Regeneration/drug effects , Skin/blood supply , Skin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...