Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Curr Med Chem ; 24(30): 3254-3282, 2017.
Article in English | MEDLINE | ID: mdl-27804880

ABSTRACT

Snake venoms are natural sources of biologically active molecules that are able to act selectively and specifically on different cellular targets, modulating physiological functions. Thus, these mixtures, composed mainly of proteins and peptides, provide ample and challenging opportunities and a diversified molecular architecture to design and develop tools and agents of scientific and therapeutic interest. Among these components, peptides and small proteins play diverse roles in numerous physiological processes, exerting a wide range of pharmacological activities, such as antimicrobial, antihypertensive, analgesic, antitumor, analgesic, among others. The pharmaceutical and cosmetic industries have recognized the huge potential of these privileged frameworks and believe them to be a promising alternative to contemporary drugs. A number of natural or synthetic peptides from snake venoms have already found preclinical or clinical applications for the treatment of pain, hypertension, cardiovascular diseases and aging skin. A well-known example is captopril, whose natural peptide precursor was isolated from Bothrops jararaca snake venom, which is a peptide-based drug that inhibits the angiotensin-converting enzyme, producing an anti-hypertensive effect. The present review looks at the main peptides (natriuretic peptides, bradykinin-potentiating peptides and sarafotoxins) and low mass proteins (crotamine, disintegrins and three-Finger toxins) from snake venoms, as well as synthetic peptides inspired by them, describing their biochemical, structural and physiological features, as well as their applications as research tools and therapeutic agents.


Subject(s)
Peptides/chemistry , Snake Venoms/chemistry , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/isolation & purification , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Animals , Bothrops/metabolism , Humans , Hypertension/drug therapy , Peptides/isolation & purification , Peptides/therapeutic use , Peptidomimetics/chemistry , Peptidomimetics/therapeutic use , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/isolation & purification , Platelet Aggregation Inhibitors/therapeutic use , Thrombosis/drug therapy
2.
Braz J Med Biol Res ; 43(3): 262-70, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20401434

ABSTRACT

To illustrate the construction of precursor complementary DNAs, we isolated mRNAs from whole venom samples. After reverse transcription polymerase chain reaction (RT-PCR), we amplified the cDNA coding for a neurotoxic protein, phospholipase A2 D49 (PLA2 D49), from the venom of Crotalus durissus collilineatus (Cdc PLA2). The cDNA encoding Cdc PLA2 from whole venom was sequenced. The deduced amino acid sequence of this cDNA has high overall sequence identity with the group II PLA2 protein family. Cdc PLA2 has 14 cysteine residues capable of forming seven disulfide bonds that characterize this group of PLA2 enzymes. Cdc PLA2 was isolated using conventional Sephadex G75 column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The molecular mass was estimated using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We tested the neuromuscular blocking activities on chick biventer cervicis neuromuscular tissue. Phylogenetic analysis of Cdc PLA2 showed the existence of two lines of N6-PLA2, denominated F24 and S24. Apparently, the sequences of the New World's N6-F24-PLA2 are similar to those of the agkistrodotoxin from the Asian genus Gloydius. The sequences of N6-S24-PLA2 are similar to the sequence of trimucrotoxin from the genus Protobothrops, found in the Old World.


Subject(s)
Crotalid Venoms/toxicity , Neuromuscular Junction/drug effects , Neurotoxins/toxicity , Phospholipases A2/toxicity , Amino Acid Sequence , Animals , Chickens , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Crotalid Venoms/enzymology , Crotalid Venoms/genetics , DNA, Complementary/genetics , Male , Mass Spectrometry , Molecular Sequence Data , Phospholipases A2/chemistry , Phospholipases A2/genetics , Phylogeny , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
3.
Braz. j. med. biol. res ; 43(3): 262-270, Mar. 2010. ilus
Article in English | LILACS | ID: lil-539726

ABSTRACT

To illustrate the construction of precursor complementary DNAs, we isolated mRNAs from whole venom samples. After reverse transcription polymerase chain reaction (RT-PCR), we amplified the cDNA coding for a neurotoxic protein, phospholipase A2 D49 (PLA2 D49), from the venom of Crotalus durissus collilineatus (Cdc PLA2). The cDNA encoding Cdc PLA2 from whole venom was sequenced. The deduced amino acid sequence of this cDNA has high overall sequence identity with the group II PLA2 protein family. Cdc PLA2 has 14 cysteine residues capable of forming seven disulfide bonds that characterize this group of PLA2 enzymes. Cdc PLA2 was isolated using conventional Sephadex G75 column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The molecular mass was estimated using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We tested the neuromuscular blocking activities on chick biventer cervicis neuromuscular tissue. Phylogenetic analysis of Cdc PLA2 showed the existence of two lines of N6-PLA2, denominated F24 and S24. Apparently, the sequences of the New World’s N6-F24-PLA2 are similar to those of the agkistrodotoxin from the Asian genus Gloydius. The sequences of N6-S24-PLA2 are similar to the sequence of trimucrotoxin from the genus Protobothrops, found in the Old World.


Subject(s)
Animals , Male , Crotalid Venoms/toxicity , Neuromuscular Junction/drug effects , Neurotoxins/toxicity , /toxicity , Amino Acid Sequence , Chickens , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Crotalid Venoms/enzymology , Crotalid Venoms/genetics , DNA, Complementary/genetics , Mass Spectrometry , Molecular Sequence Data , Phylogeny , /chemistry , /genetics , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...