Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Med Chem ; 67(8): 6064-6080, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38595098

ABSTRACT

It has been shown that PRMT5 inhibition by small molecules can selectively kill cancer cells with homozygous deletion of the MTAP gene if the inhibitors can leverage the consequence of MTAP deletion, namely, accumulation of the MTAP substrate MTA. Herein, we describe the discovery of TNG908, a potent inhibitor that binds the PRMT5·MTA complex, leading to 15-fold-selective killing of MTAP-deleted (MTAP-null) cells compared to MTAPintact (MTAP WT) cells. TNG908 shows selective antitumor activity when dosed orally in mouse xenograft models, and its physicochemical properties are amenable for crossing the blood-brain barrier (BBB), supporting clinical study for the treatment of both CNS and non-CNS tumors with MTAP loss.


Subject(s)
Antineoplastic Agents , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Brain/metabolism , Structure-Activity Relationship
2.
Stat Comput ; 33(4): 81, 2023.
Article in English | MEDLINE | ID: mdl-37220636

ABSTRACT

Count data that are subject to both under and overdispersion at some hierarchical level cannot be readily accommodated by classic models such as Poisson or negative binomial regression models. The mean-parameterised Conway-Maxwell-Poisson distribution allows for both types of dispersion within the same model, but is doubly intractable with an embedded normalising constant. We propose a look-up method where pre-computing values of the rate parameter dramatically reduces computing times and renders the proposed model a practicable alternative when faced with such bidispersed data. The approach is demonstrated and verified using a simulation study and applied to three datasets: an underdispersed small dataset on takeover bids, a medium dataset on yellow cards issued by referees in the English Premier League prior to and during the Covid-19 pandemic, and a large Test match cricket bowling dataset, the latter two of which each exhibit over and underdispersion at the individual level.

3.
Mol Cancer Ther ; 22(2): 215-226, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36228090

ABSTRACT

CRISPR Cas9-based screening is a powerful approach for identifying and characterizing novel drug targets. Here, we elucidate the synthetic lethal mechanism of deubiquitinating enzyme USP1 in cancers with underlying DNA damage vulnerabilities, specifically BRCA1/2 mutant tumors and a subset of BRCA1/2 wild-type (WT) tumors. In sensitive cells, pharmacologic inhibition of USP1 leads to decreased DNA synthesis concomitant with S-phase-specific DNA damage. Genome-wide CRISPR-Cas9 screens identify RAD18 and UBE2K, which promote PCNA mono- and polyubiquitination respectively, as mediators of USP1 dependency. The accumulation of mono- and polyubiquitinated PCNA following USP1 inhibition is associated with reduced PCNA protein levels. Ectopic expression of WT or ubiquitin-dead K164R PCNA reverses USP1 inhibitor sensitivity. Our results show, for the first time, that USP1 dependency hinges on the aberrant processing of mono- and polyubiquitinated PCNA. Moreover, this mechanism of USP1 dependency extends beyond BRCA1/2 mutant tumors to selected BRCA1/2 WT cancer cell lines enriched in ovarian and lung lineages. We further show PARP and USP1 inhibition are strongly synergistic in BRCA1/2 mutant tumors. We postulate USP1 dependency unveils a previously uncharacterized vulnerability linked to posttranslational modifications of PCNA. Taken together, USP1 inhibition may represent a novel therapeutic strategy for BRCA1/2 mutant tumors and a subset of BRCA1/2 WT tumors.


Subject(s)
Neoplasms , Synthetic Lethal Mutations , Humans , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Ubiquitin/genetics , Ubiquitination , DNA Damage , Neoplasms/genetics , Ubiquitin-Conjugating Enzymes/metabolism , DNA-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
4.
J Correct Health Care ; 28(6): 368-371, 2022 12.
Article in English | MEDLINE | ID: mdl-36342953

ABSTRACT

Incarcerated clients experience high rates of opioid use disorder and overdose. It is critical that opioid agonist treatment (OAT) is provided in correctional facilities. However, few receive OAT due to concerns about diversion, misuse, and safety. Buprenorphine extended-release (BUP-XR), a monthly buprenorphine depot injection, could be especially advantageous in the correctional setting as it can prevent diversion and misuse, saving staff resources and time. An injection of BUP-XR is costly compared with a monthly supply of buprenorphine/naloxone (BUP/NX) tablets. We demonstrate that when factoring in the added costs of medication preparation, administration, monitoring, and personnel, it is more economical to provide BUP-XR than BUP/NX. Other facilities, by utilizing our cost breakdown, can determine whether BUP-XR is economically advantageous at their own facility.


Subject(s)
Buprenorphine , Opioid-Related Disorders , Humans , Narcotic Antagonists/therapeutic use , Prisons , Buprenorphine, Naloxone Drug Combination/therapeutic use , Buprenorphine/therapeutic use , Opioid-Related Disorders/drug therapy , Tablets/therapeutic use , Costs and Cost Analysis
5.
Cancer Res ; 82(21): 4044-4057, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36069976

ABSTRACT

Synthetic lethality is a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone, which can be co-opted for cancer therapeutics. Pairs of paralog genes are among the most straightforward potential synthetic-lethal interactions by virtue of their redundant functions. Here, we demonstrate a paralog-based synthetic lethality by targeting vaccinia-related kinase 1 (VRK1) in glioblastoma (GBM) deficient of VRK2, which is silenced by promoter methylation in approximately two thirds of GBM. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells resulted in decreased activity of the downstream substrate barrier to autointegration factor (BAF), a regulator of post-mitotic nuclear envelope formation. Reduced BAF activity following VRK1 knockdown caused nuclear lobulation, blebbing, and micronucleation, which subsequently resulted in G2-M arrest and DNA damage. The VRK1-VRK2 synthetic-lethal interaction was dependent on VRK1 kinase activity and was rescued by ectopic expression of VRK2. In VRK2-methylated GBM cell line-derived xenograft and patient-derived xenograft models, knockdown of VRK1 led to robust tumor growth inhibition. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM. SIGNIFICANCE: A paralog synthetic-lethal interaction between VRK1 and VRK2 sensitizes VRK2-methylated glioblastoma to perturbation of VRK1 kinase activity, supporting VRK1 as a drug discovery target in this disease.


Subject(s)
Glioblastoma , Humans , Apoptosis , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Vaccinia virus , Phosphorylation , Protein Serine-Threonine Kinases
6.
Medicine (Baltimore) ; 101(36): e30151, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36086680

ABSTRACT

PURPOSE: To elucidate the relationship between peripheral edema and programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1) inhibitors, the meta-analysis was performed. METHOD: Following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-analyses, all-grade and grade 3-5 of peripheral edema data extracted from clinical trials were taken into account for the final comprehensive assessments. RESULTS: Twenty-seven PD-1/PD-L1-related clinical trials with peripheral edema data were collected. Compared with chemotherapy (PD-1/PD-L1 vs chemotherapy), the risk of developing peripheral edema for all-grade was much lower (odds ratio [OR] = 0.36, 95% confidence interval [CI]: [0.23, 0.56], Z = 4.55 [P < .00001]). When PD-1/PD-L1 plus chemotherapy were compared with chemotherapy, no significant analysis results for all-grade was found (OR = 1.15, 95% CI:[0.93, 1.44], I2 = 25%, Z = 1.27 [P = .20]). Similar risk trends could also be found when the incidence risk of peripheral edema for grade 3-5 was evaluated. No obvious publication bias was identified throughout the total analysis process. CONCLUSION: The effect of PD-1/PD-L1 inhibitor on the risk of developing peripheral edema was weaker than that of chemotherapy, and the combination with chemotherapy slightly increased the incidence risk of developing peripheral edema without statistical significance.


Subject(s)
B7-H1 Antigen , Neoplasms , B7-H1 Antigen/therapeutic use , Edema/drug therapy , Humans , Immune Checkpoint Inhibitors/adverse effects , Incidence , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/therapeutic use
7.
Biomed Res Int ; 2022: 5673810, 2022.
Article in English | MEDLINE | ID: mdl-35528180

ABSTRACT

Purpose: This study was designed to clarify the prognostic value of tumor microenvironment score and abnormal genomic alterations in TME for breast cancer patients. Method: The TCGA-BRCA data were downloaded from TCGA and analyzed with R software. The results from analyses were further validated using the dataset from GSE96058, GSE124647, and GSE25066. Results: After analyzing the TCGA data and verifying it with the GEO data, we developed a TMEscore model based on the TME infiltration pattern and validated it in 3273 breast cancer patients. The results suggested that our TMEscore model has high prognostic value. TME features with the TMEscore model can help to predict breast cancer patients' response to immunotherapy and provide new strategies for breast cancer treatment. Signature 24 was first found in breast cancer. In focal SCNAs, a total of 95 amplified genes and 169 deletion genes in the TMEscore high group were found to be significantly related to the prognosis of breast cancer patients, while 61 amplified genes and 174 deletion genes in the TMEscore low group were identified. LRRC48, CFAP69, and cg25726128 were first discovered and reported to be related to the survival of breast cancer patients. We identified specific mutation signatures that correlate with TMEscore and prognosis. Conclusion: TMEscore model has high predictive value regarding prognosis and patients' response to immunotherapy. Signature 24 was first found in breast cancer. Specific mutation signatures that correlate with TMEscore and prognosis might be used for providing additional indicators for disease evaluation.


Subject(s)
Breast Neoplasms , Tumor Microenvironment , Breast Neoplasms/pathology , Female , Humans , Immunotherapy/methods , Mutation/genetics , Prognosis , Tumor Microenvironment/genetics
8.
Aging (Albany NY) ; 14(7): 3155-3174, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35398839

ABSTRACT

The biological functional network of tumor tissues is relatively stable for a period of time and under different conditions, so the impact of tumor heterogeneity is effectively avoided. Based on edge perturbation, functional gene interaction networks were used to reveal the pathological environment of patients with non-small cell carcinoma at the individual level, and to identify cancer subtypes with the same or similar status, and then a multi-dimensional and multi-omics comprehensive analysis was put into practice. Two edge perturbation subtypes were identified through the construction of the background interaction network and the edge-perturbation matrix (EPM). Further analyses revealed clear differences between those two clusters in terms of prognostic survival, stemness indices, immune cell infiltration, immune checkpoint molecular expression, copy number alterations, mutation load, homologous recombination defects (HRD), neoantigen load, and chromosomal instability. Additionally, a risk prediction model based on TCGA for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) was successfully constructed and validated using the independent data set (GSE50081).


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Adenocarcinoma of Lung/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Humans , Lung Neoplasms/pathology , Prognosis
9.
Aging (Albany NY) ; 13(19): 22912-22933, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34606472

ABSTRACT

Cytotoxic T cells expressing cell surface CD8 played a key role in anti-cancer immunotherapy, including kidney renal clear cell carcinoma (KIRC). Here we set out to comprehensively analyze and evaluate the significance of CD8+ T cell-related markers for patients with KIRC. We checked immune cell response in KIRC and identified cell type-specific markers and related pathways in the tumor-infiltrating CD8+ T (TIL-CD8T) cells. We used these markers to explore their prognostic signatures in TIL-CD8+ T by evaluating their prognostic efficacy and group differences at various levels. Through pan-cancer analysis, 12 of 63 up-regulated and 162 of 396 down-regulated genes in CD8+ T cells were found to be significantly correlated with the survival prognosis. Based on our highly integrated multi-platform analyses across multiple datasets, we constructed a 6-gene risk scoring model specific to TIL-CD8T. In this model, high TIL-CD8 sig score was corresponding to a higher incidence frequency of copy number variation and drug sensitivity to sorafenib. Moreover, the prognosis of patients with the same or similar immune checkpoint gene levels could be distinguished from each other by TIL-CD8 sig score.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Renal Cell/pathology , Antineoplastic Agents/pharmacology , Biomarkers, Tumor , Drug Resistance, Neoplasm , Humans , Models, Biological , Regression Analysis , Sorafenib/pharmacology
10.
EMBO J ; 40(20): e107237, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34523147

ABSTRACT

BAK and BAX, the effectors of intrinsic apoptosis, each undergo major reconfiguration to an activated conformer that self-associates to damage mitochondria and cause cell death. However, the dynamic structural mechanisms of this reconfiguration in the presence of a membrane have yet to be fully elucidated. To explore the metamorphosis of membrane-bound BAK, we employed hydrogen-deuterium exchange mass spectrometry (HDX-MS). The HDX-MS profile of BAK on liposomes comprising mitochondrial lipids was consistent with known solution structures of inactive BAK. Following activation, HDX-MS resolved major reconfigurations in BAK. Mutagenesis guided by our HDX-MS profiling revealed that the BCL-2 homology (BH) 4 domain maintains the inactive conformation of BAK, and disrupting this domain is sufficient for constitutive BAK activation. Moreover, the entire N-terminal region preceding the BAK oligomerisation domains became disordered post-activation and remained disordered in the activated oligomer. Removal of the disordered N-terminus did not impair, but rather slightly potentiated, BAK-mediated membrane permeabilisation of liposomes and mitochondria. Together, our HDX-MS analyses reveal new insights into the dynamic nature of BAK activation on a membrane, which may provide new opportunities for therapeutic targeting.


Subject(s)
Liposomes/chemistry , Membrane Lipids/chemistry , Proto-Oncogene Proteins c-bcl-2/chemistry , bcl-2 Homologous Antagonist-Killer Protein/chemistry , Animals , Binding Sites , Cloning, Molecular , Deuterium Exchange Measurement , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Liposomes/metabolism , Membrane Lipids/metabolism , Mice , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2 Homologous Antagonist-Killer Protein/metabolism
11.
Front Oncol ; 11: 662392, 2021.
Article in English | MEDLINE | ID: mdl-34109117

ABSTRACT

BACKGROUND: Understanding the safety and adverse event profiles of PD-1/PD-L1 inhibitors is important in guiding cancer immunotherapy. Consequently, we designed this meta-analysis to evaluate the safety of PD-1/PD-L1 inhibitors in clinical trials involving cancer patients. METHODS: Four safety indicators comprising treatment-related adverse events, death, discontinuation of therapy and grades 3-5 adverse events were evaluated using the random effect model. The quality of enrolled trials was assessed using the Newcastle Ottawa Scale (NOS). RESULTS: Forty-four clinical trials were included in the final meta-analysis. Compared with chemotherapy, the risk of death due to the use of PD-1/PD-L1 inhibitors was much lower than that experienced in the control group (OR = 0.65, 95%CI: [0.47, 0.91], I2 = 0%, Z = 2.52 (P = 0.01)). Similar observations were apparent regarding the other three indicators of safety and also when the use of PD-1/PD-L1 inhibitors alone is compared with the combined use of PD-1/PD-L1 and CTLA-4. When used together with chemotherapy, PD-1/PD-L1 inhibitors increased the incidence of the adverse events as compared to the use of chemotherapy alone. Increased risks for adverse events were also noticed with the use of PD-1/PD-L1 inhibitors over the use of a placebo. CONCLUSION: The use of PD-1/PD-L1 inhibitors alone is associated with a better safety profile compared to either the use of chemotherapy or the use of PD-1/PD-L1 inhibitors with other anticancer regimens.

12.
J Clin Microbiol ; 59(2)2021 01 21.
Article in English | MEDLINE | ID: mdl-33239382

ABSTRACT

Highly accurate testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the point of care (POC) is an unmet diagnostic need in emergency care and time-sensitive outpatient care settings. Reverse transcription-PCR (RT-PCR) technology is the gold standard for SARS-CoV-2 diagnostics. We performed a multisite U.S. study comparing the clinical performance of the first U.S. Food and Drug Administration (FDA)-authorized POC RT-PCR for detection of SARS-CoV-2 in 20 min, the cobas Liat SARS-CoV-2 and influenza A/B nucleic acid test, to the most widely used RT-PCR laboratory test, the cobas 68/8800 SARS-CoV-2 test. Clinical nasopharyngeal swab specimens from 444 patients with 357 evaluable specimens at five U.S. clinical laboratories were enrolled from 21 September 2020 to 23 October 2020. The overall agreement between the Liat and 68/8800 systems for SARS-CoV-2 diagnostics was 98.6% (352/357). Using Liat, positive percent agreement for SARS-CoV-2 was 100% (162/162) and the negative percent agreement was 97.4% (190/195). The Liat is an RT-PCR POC test that provides highly accurate SARS-CoV-2 results in 20 min with performance equivalent to that of high-throughput laboratory molecular testing. Rapid RT-PCR testing at the POC can enable more timely infection control and individual care decisions for coronavirus disease 2019.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Point-of-Care Systems , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing/instrumentation , Humans , Nasopharynx/virology , SARS-CoV-2/genetics , Time Factors , United States
13.
Nat Biotechnol ; 39(1): 94-104, 2021 01.
Article in English | MEDLINE | ID: mdl-32661438

ABSTRACT

Cas12a RNA-guided endonucleases are promising tools for multiplexed genetic perturbations because they can process multiple guide RNAs expressed as a single transcript, and subsequently cleave target DNA. However, their widespread adoption has lagged behind Cas9-based strategies due to low activity and the lack of a well-validated pooled screening toolkit. In the present study, we describe the optimization of enhanced Cas12a from Acidaminococcus (enAsCas12a) for pooled, combinatorial genetic screens in human cells. By assaying the activity of thousands of guides, we refine on-target design rules and develop a comprehensive set of off-target rules to predict and exclude promiscuous guides. We also identify 38 direct repeat variants that can substitute for the wild-type sequence. We validate our optimized AsCas12a toolkit by screening for synthetic lethalities in OVCAR8 and A375 cancer cells, discovering an interaction between MARCH5 and WSB2. Finally, we show that enAsCas12a delivers similar performance to Cas9 in genome-wide dropout screens but at greatly reduced library size, which will facilitate screens in challenging models.


Subject(s)
Bacterial Proteins , CRISPR-Associated Proteins , CRISPR-Cas Systems/genetics , Endodeoxyribonucleases , Gene Editing/methods , RNA, Guide, Kinetoplastida , Acidaminococcus/genetics , Apoptosis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , Cell Line, Tumor , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Gene Library , HEK293 Cells , Humans , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
14.
Exp Mol Med ; 52(11): 1857-1868, 2020 11.
Article in English | MEDLINE | ID: mdl-33235319

ABSTRACT

Hepatocellular carcinoma (HCC) is a lethal cancer with limited therapeutic options, and standard therapy with sorafenib provides only modest survival benefits. Fibroblast growth factor 19 (FGF19) has been proposed as a driver oncogene, and targeting its receptor, FGFR-4, may provide a better alternative to standard therapy for patients with FGF19-driven tumors. Sixty-three HCC patient-derived xenograft (PDX) models were screened for FGF19 expression. Mice bearing high and low FGF19-expressing tumors were treated with FGF401 and/or vinorelbine, and the antitumor activity of both agents was assessed individually and in combination. Tumor vasculature and intratumoral hypoxia were also examined. High FGF19 expression was detected in 14.3% (9 of 63) of the HCC models tested and may represent a good target for HCC treatment. FGF401 potently inhibited the growth of high FGF19-expressing HCC models regardless of FGF19 gene amplification. Furthermore, FGF401 inhibited the FGF19/FGFR-4 signaling pathway, cell proliferation, and hypoxia, induced apoptosis and blood vessel normalization and prolonged the overall survival (OS) of mice bearing high FGF19 tumors. FGF401 synergistically acted with the microtubule-depolymerizing drug vinorelbine to further suppress tumor growth, promote apoptosis, and prolong the OS of mice bearing high FGF19 tumors, with no evidence of increased toxicity. Our study suggests that a subset of patients with high FGF19-expressing HCC tumors could benefit from FGF401 or FGF401/vinorelbine treatment. A high level of FGF19 in a tumor may serve as a potential biomarker for patient selection.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Hepatocellular/metabolism , Fibroblast Growth Factors/metabolism , Liver Neoplasms/metabolism , Piperazines/pharmacology , Pyridines/pharmacology , Vinorelbine/pharmacology , Animals , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Synergism , Fibroblast Growth Factors/antagonists & inhibitors , Fibroblast Growth Factors/genetics , Gene Expression , Humans , Immunohistochemistry , Liver Neoplasms/drug therapy , Liver Neoplasms/etiology , Liver Neoplasms/pathology , Mice , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Xenograft Model Antitumor Assays
15.
Nat Rev Drug Discov ; 19(1): 23-38, 2020 01.
Article in English | MEDLINE | ID: mdl-31712683

ABSTRACT

The first wave of genetically targeted therapies for cancer focused on drugging gene products that are recurrently mutated in specific cancer types. However, mutational analysis of tumours has largely been exhausted as a strategy for the identification of new cancer targets that are druggable with conventional approaches. Furthermore, some known genetic drivers of cancer have not been directly targeted yet owing to their molecular structure (undruggable oncogenes) or because they result in functional loss (tumour suppressor genes). Functional genomic screening based on the genetic concept of synthetic lethality provides an avenue to discover drug targets in all these areas. Although synthetic lethality is not a new idea, recent advances, including CRISPR-based gene editing, have made possible systematic screens for synthetic lethal drug targets in human cancers. Such approaches have broad potential to drive the discovery of the next wave of genetic cancer targets and ultimately the introduction of effective medicines that are still needed for most cancers.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Discovery , Gene Editing , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Synthetic Lethal Mutations/drug effects , Genetic Therapy , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics
16.
Front Immunol ; 10: 14, 2019.
Article in English | MEDLINE | ID: mdl-30761123

ABSTRACT

Natural killer (NK) cells are innate cytotoxic and immunoregulatory lymphocytes that have a central role in anti-tumor immunity and play a critical role in mediating cellular immunity in advanced cancer immunotherapies, such as dendritic cell (DC) vaccines. Our group recently tested a novel recombinant adenovirus-transduced autologous DC-based vaccine that simultaneously induces T cell responses against three melanoma-associated antigens for advanced melanoma patients. Here, we examine the impact of this vaccine as well as the subsequent systemic delivery of high-dose interferon-α2b (HDI) on the circulatory NK cell profile in melanoma patients. At baseline, patient NK cells, particularly those isolated from high-risk patients with no measurable disease, showed altered distribution of CD56dim CD16+ and CD56dim CD16- NK cell subsets, as well as elevated serum levels of immune suppressive MICA, TN5E/CD73 and tactile/CD96, and perforin. Surprisingly, patient NK cells displayed a higher level of activation than those from healthy donors as measured by elevated CD69, NKp44 and CCR7 levels, and enhanced K562 killing. Elevated cytolytic ability strongly correlated with increased representation of CD56dim CD16+ NK cells and amplified CD69 expression on CD56dim CD16+ NK cells. While intradermal DC immunizations did not significantly impact circulatory NK cell activation and distribution profiles, subsequent HDI injections enhanced CD56bright CD16- NK cell numbers when compared to patients that did not receive HDI. Phenotypic analysis of tumor-infiltrating NK cells showed that CD56dim CD16- NK cells are the dominant subset in melanoma tumors. NanoString transcriptomic analysis of melanomas resected at baseline indicated that there was a trend of increased CD56dim NK cell gene signature expression in patients with better clinical response. These data indicate that melanoma patient blood NK cells display elevated activation levels, that intra-dermal DC immunizations did not effectively promote systemic NK cell responses, that systemic HDI administration can modulate NK cell subset distributions and suggest that CD56dim CD16- NK cells are a unique non-cytolytic subset in melanoma patients that may associate with better patient outcome.


Subject(s)
Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , Interferon-alpha/therapeutic use , Killer Cells, Natural/immunology , Melanoma/immunology , Melanoma/therapy , Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Biomarkers , CD56 Antigen/metabolism , Clinical Trials, Phase I as Topic , Combined Modality Therapy , Cytotoxicity, Immunologic , Humans , Immunophenotyping , Immunotherapy , Interferon-alpha/pharmacology , Killer Cells, Natural/metabolism , Lymphocyte Activation/immunology , Melanoma/diagnosis , Melanoma/metabolism , Neoplasm Staging , Receptors, IgG/metabolism , Treatment Outcome , Tumor Microenvironment/immunology
17.
Clin Cancer Res ; 25(10): 3164-3175, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30674502

ABSTRACT

PURPOSE: The selective MET inhibitor capmatinib is being investigated in multiple clinical trials, both as a single agent and in combination. Here, we describe the preclinical data of capmatinib, which supported the clinical biomarker strategy for rational patient selection. EXPERIMENTAL DESIGN: The selectivity and cellular activity of capmatinib were assessed in large cellular screening panels. Antitumor efficacy was quantified in a large set of cell line- or patient-derived xenograft models, testing single-agent or combination treatment depending on the genomic profile of the respective models. RESULTS: Capmatinib was found to be highly selective for MET over other kinases. It was active against cancer models that are characterized by MET amplification, marked MET overexpression, MET exon 14 skipping mutations, or MET activation via expression of the ligand hepatocyte growth factor (HGF). In cancer models where MET is the dominant oncogenic driver, anticancer activity could be further enhanced by combination treatments, for example, by the addition of apoptosis-inducing BH3 mimetics. The combinations of capmatinib and other kinase inhibitors resulted in enhanced anticancer activity against models where MET activation co-occurred with other oncogenic drivers, for example EGFR activating mutations. CONCLUSIONS: Activity of capmatinib in preclinical models is associated with a small number of plausible genomic features. The low fraction of cancer models that respond to capmatinib as a single agent suggests that the implementation of patient selection strategies based on these biomarkers is critical for clinical development. Capmatinib is also a rational combination partner for other kinase inhibitors to combat MET-driven resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Evaluation, Preclinical/methods , Imidazoles/pharmacology , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Triazines/pharmacology , Animals , Benzamides , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Enzyme Activation/drug effects , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Xenograft Model Antitumor Assays
18.
JAMA Oncol ; 5(2): e184475, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30543347

ABSTRACT

Importance: The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in patients with estrogen receptor-positive (ER+), endocrine therapy-resistant breast cancers. Objective: To assess the maximum tolerated dose (MTD), safety, and activity of alpelisib, an oral, PI3Kα-specific inhibitor, plus fulvestrant in patients with ER+ advanced breast cancer (ABC). Design, Setting, and Participants: An open-label, single-arm, phase 1b study of alpelisib plus fulvestrant was conducted at 10 centers in 5 countries. Participants were 87 postmenopausal women with PIK3CA-altered or PIK3CA-wild-type ER+ ABC, whose cancer progressed during or after antiestrogen therapy. The study began enrolling patients October 5, 2010, and the data cutoff was March 22, 2017. Interventions: Escalating doses of alpelisib were administered once daily, starting at 300 mg, plus fixed-dose fulvestrant, 500 mg, in the dose-escalation phase; alpelisib at the recommended phase 2 dose plus fulvestrant in the dose-expansion phase. Main Outcomes and Measures: The primary end point was determination of the MTD of once-daily alpelisib plus fulvestrant. Secondary end points included safety and preliminary activity. Results: From October 5, 2010, to March 22, 2017, 87 women (median age: 58 years [range, 37-79 years]; median of 5 prior lines of antineoplastic therapy) received escalating once-daily doses of alpelisib (300 mg, n = 9; 350 mg, n = 8; 400 mg, n = 70) plus fixed-dose fulvestrant (500 mg). During dose escalation, dose-limiting toxic effects were reported in 1 patient (alpelisib, 400 mg): diarrhea (grade 2), vomiting, fatigue, and decreased appetite (all grade 3). The MTD of alpelisib when combined with fulvestrant was 400 mg once daily, and the recommended phase 2 dose was 300 mg once daily. Overall, the most frequent grade 3/4 adverse events with alpelisib, 400 mg, once daily (≥10% of patients), regardless of causality, were hyperglycemia (19 [22%]) and maculopapular rash (11 [13%]); 9 patients permanently discontinued therapy owing to adverse events. Median progression-free survival at the MTD was 5.4 months (95% CI, 4.6-9.0 months). Median progression-free survival with alpelisib, 300 to 400 mg, once daily plus fulvestrant was longer in patients with PIK3CA-altered tumors (9.1 months; 95% CI, 6.6-14.6 months) vs wild-type tumors (4.7 months; 95% CI, 1.9-5.6 months). Overall response rate in the PIK3CA-altered group was 29% (95% CI, 17%-43%), with no objective tumor responses in the wild-type group. Conclusions and Relevance: Alpelisib plus fulvestrant has a manageable safety profile in patients with ER+ ABC, and data suggest that this combination may have greater clinical activity in PIK3CA-altered vs wild-type tumors. Trial Registration: ClinicalTrials.gov identifier: NCT01219699.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/genetics , Estrogen Receptor Antagonists/administration & dosage , Fulvestrant/administration & dosage , Mutation , Protein Kinase Inhibitors/administration & dosage , Receptors, Estrogen/analysis , Thiazoles/administration & dosage , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Breast Neoplasms/chemistry , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Disease Progression , Estrogen Receptor Antagonists/adverse effects , Female , Fulvestrant/adverse effects , Humans , Maximum Tolerated Dose , Middle Aged , Progression-Free Survival , Protein Kinase Inhibitors/adverse effects , Thiazoles/adverse effects , Time Factors
19.
Hepatology ; 69(3): 943-958, 2019 03.
Article in English | MEDLINE | ID: mdl-30575985

ABSTRACT

The fibroblast growth factor (FGF) signaling cascade is a key signaling pathway in hepatocarcinogenesis. We report high FGF receptor (FGFR) expression in 17.7% (11 of 62) of hepatocellular carcinoma (HCC) models. Infigratinib, a pan-FGFR inhibitor, potently suppresses the growth of high-FGFR-expressing and sorafenib-resistant HCCs. Infigratinib inhibits FGFR signaling and its downstream targets, cell proliferation, the angiogenic rescue program, hypoxia, invasion, and metastasis. Infigratinib also induces apoptosis and vessel normalization and improves the overall survival of mice bearing FGFR-driven HCCs. Infigratinib acts in synergy with the microtubule-depolymerizing drug vinorelbine to promote apoptosis, suppress tumor growth, and improve the overall survival of mice. Increased expression levels of FGFR-2 and FGFR-3 through gene amplification correlate with treatment response and may serve as potential biomarkers for patient selection. Conclusion: Treatments with Infigratinib alone or in combination with vinorelbine may be effective in a subset of patients with HCC with FGFR-driven tumors.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Phenylurea Compounds/therapeutic use , Pyrimidines/therapeutic use , Animals , Blood Vessels/drug effects , Carcinoma, Hepatocellular/secondary , Liver Neoplasms/pathology , Male , Mice , Mice, SCID , Phenylurea Compounds/pharmacology , Pyrimidines/pharmacology
20.
J Transl Med ; 16(1): 253, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30208970

ABSTRACT

BACKGROUND: Aberrant MET tyrosine kinase signaling is known to cause cancer initiation and progression. While MET inhibitors are in clinical trials against several cancer types, the clinical efficacies are controversial and the molecular mechanisms toward sensitivity remain elusive. METHODS: With the goal to investigate the molecular basis of MET amplification (METamp) and hepatocyte growth factor (HGF) autocrine-driven tumors in response to MET tyrosine kinase inhibitors (TKI) and neutralizing antibodies, we compared cancer cells harboring METamp (MKN45 and MHCCH97H) or HGF-autocrine (JHH5 and U87) for their sensitivity and downstream biological responses to a MET-TKI (INC280) and an anti-MET monoclonal antibody (MetMab) in vitro, and for tumor inhibition in vivo. RESULTS: We find that cancer cells driven by METamp are more sensitive to INC280 than are those driven by HGF-autocrine activation. In METamp cells, INC280 induced a DNA damage response with activation of repair through the p53BP1/ATM signaling pathway. Although MetMab failed to inhibit METamp cell proliferation and tumor growth, both INC280 and MetMab reduced HGF-autocrine tumor growth. In addition, we also show that HGF stimulation promoted human HUVEC cell tube formation via the Src pathway, which was inhibited by either INC280 or MetMab. These observations suggest that in HGF-autocrine tumors, the endothelial cells are the secondary targets MET inhibitors. CONCLUSIONS: Our results demonstrate that METamp and HGF-autocrine activation favor different molecular mechanisms. While combining MET TKIs and ATM inhibitors may enhance the efficacy for treating tumors harboring METamp, a combined inhibition of MET and angiogenesis pathways may improve the therapeutic efficacy against HGF-autocrine tumors.


Subject(s)
Antibodies, Neutralizing/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/metabolism , Animals , Antibodies, Monoclonal/pharmacology , Ataxia Telangiectasia Mutated Proteins/metabolism , Autocrine Communication/drug effects , Benzamides , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Breaks, Double-Stranded/drug effects , DNA Repair/drug effects , Hepatocyte Growth Factor/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Imidazoles/pharmacology , Mice, SCID , Signal Transduction/drug effects , Triazines/pharmacology , Tumor Suppressor p53-Binding Protein 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...