Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 11(53): 33759-33769, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-35497520

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide. Early diagnosis and treatment is critical to improving the 5 year survival rate of lung cancer. The identification of new options for early-stage diagnosis and therapy of lung cancer still represents a crucial challenge. Therefore, a new diagnostic method is urgently needed. In this study, we used a new modified SELEX, called serum-SELEX, to isolate aptamers that can specifically bind lung cancer serum, without any prior knowledge of their target. Among the obtained candidate aptamer sequences, Ap-LC-19 was identified as the optimal aptamer probe with the lowest dissociation constant (K d) value of 15 ± 8.6 nM and higher affinity assessed by qPCR. Furthermore, this molecule could be a suitable aptamer for lung cancer serum and could be used as a recognition element in aptamer-based biosensors for efficient early diagnosis of lung cancer or as an innovative tool for targeted therapy. In addition, we performed MALDI-TOF MS followed by secondary peptide sequencing MS analysis for the identification of the aptamer targeted proteins. CLEC3B could be useful biomarkers for early detection of lung cancer and in monitoring its evolution.

2.
RSC Adv ; 9(2): 950-957, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-35517584

ABSTRACT

Gastric cancer is still among the leading causes of cancer deaths worldwide. Despite the improvements in diagnostic methods, the status of early detection has not been achieved so far. Early diagnosis of gastric cancer may significantly improve the cure rate of patients. Therefore, a new diagnostic method is needed. In this study, subtractive SELEX was performed to screen gastric cancer serum-specific DNA aptamers by using gastric cancer serum and normal serum as the target and negative serum, respectively. Four highly specific aptamers generated for gastric cancer serum, Seq-3, Seq-6, Seq-19 and Seq-54, were developed using whole-serum subtractive SELEX technology with K d of 128 ± 26.3 nM, 149 ± 23.6 nM, 232 ± 44.2 nM, 202 ± 25.6 nM, respectively. These generated aptamers showed higher specificities toward their target serum by differentiating normal serum but closely related other cancer serums. The selected four high affinity DNA aptamers were further applied to the development based on qPCR method for the early detection of gastric cancer. In addition, we performed MALDI-TOF MS followed by secondary peptide sequencing MS analysis for the identification of the aptamer binding proteins. Among these potential biomarkers, APOA1, APOA4, PARD3, Importin subunit alpha-1 showed a relatively high score probability. Therefore, these four ssDNA aptamers generated in our study could be a promising molecular probe for gastric cancer diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...