Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2311713, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302103

ABSTRACT

Biaxially-oriented polypropylene (BOPP) is one of the most commonly used materials for film-based capacitors for power electronics and pulsed power systems. To address the pressing issue of performance-limiting loss under extreme electric-fields, here a one-step, high-throughput, and environment-friendly process based on very low-dose ultra-violet irradiation from KrCl (222 nm) and Xe2 (172 nm) excimer is demonstrated. The performance of commercial BOPP is boosted in terms of withstanding electric-field extremes (Weibull breakdown strength 694 to 811 V µm-1 by 17% at 25 °C and 428 to 651 V µm-1 by 52% at 120 °C), discharged energy density, and conduction losses. Importantly, the depth profile of space charge is precisely measured in situ with a high resolution of 500 nm by laser induced pressure pulse. Consequently, the space charge effect and electric-field distortion are reduced and related to the improved polymer films. It is demonstrated that energetic UV photons act as scissors for BOPP chains and dissociate oxygen molecules leading to the more thermally stable oxygen-containing structures, as deep traps to impede charge migration. This work provides a promising approach to produce polymers with customized microscopic characteristics that is compatible with the assembly lines of polymer-based capacitors.

2.
Front Chem ; 11: 1173870, 2023.
Article in English | MEDLINE | ID: mdl-37332893

ABSTRACT

Sulfur mustard (SM) is one kind of highly toxic chemical warfare agent and easy to spread, while existing detection methods cannot fulfill the requirement of rapid response, good portability, and cost competitiveness at the same time. In this work, the microwave atmospheric pressure plasma optical emission spectroscopy (MW-APP-OES) method, taking the advantage of non-thermal equilibrium, high reactivity, and high purity of MW plasma, is developed to detect three kinds of SM simulants, i.e., 2-chloroethyl ethyl sulfide, dipropyl disulfide, and ethanethiol. Characteristic OES from both atom lines (C I and Cl I) and radical bands (CS, CH, and C2) is identified, confirming MW-APP-OES can preserve more information about target agents without full atomization. Gas flow rate and MW power are optimized to achieve the best analytical results. Good linearity is obtained from the calibration curve for the CS band (linear coefficients R 2 > 0.995) over a wide range of concentrations, and a limit of detection down to sub-ppm is achieved with response time on the order of second. With SM simulants as examples, the analytical results in this work indicate that MW-APP-OES is a promising method for real-time and in-site detection of chemical warfare agents.

3.
ACS Appl Mater Interfaces ; 13(38): 45566-45577, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34519473

ABSTRACT

Bimetallic, bifunctional electrocatalysts capable of driving both oxygen (OER) and hydrogen (HER) evolution half-reactions on both electrodes in commercial water electrolysis cells are among the most promising materials systems for clean hydrogen energy generation. However, insufficient hydrogen and oxygen production activity at industry-relevant current densities and long-term catalyst stability on the electrode surface prevent this approach from industrial translation. This work resolves these challenges by advancing the promising, yet far-from-successful attempts to sprout bimetallic electrocatalytic nanostructures directly from electrode frames. For the first time, we utilize magnetic-field-focused, atmospheric-pressure plasma jets in oxygen-argon gas mixtures to successfully induce the nanointerfaced bimetallic NiCo hydroxide and oxide catalyst phases. After a simple hydrothermal treatment in pure water, NiCo bimetallic hydroxide nanosheets are densely covered with strongly bonded bimetallic NiCo oxide nanoparticles which ensure high catalytic activity evidenced by the low overpotentials for both HER and OER for delivering a current density of 100 mA cm-2 (j100) of only 306 and 484 mV, respectively. The electrode-emerged nanointerfaced NiCo hydroxide-oxide bimetallic system (NiCo2O4-NiCo(OH)x) shows an ultrastable electrocatalytic performance under a high current density of j200, which only decays 5.8% and 6.3% for HER and OER processes within 100 h. The competitive H2 and O2 production rates are about 1.27 and 0.69 mmol h-1 cm-2 (near to 2:1, under j10 conditions), meeting a nearly 100% Faradaic efficiency. Furthermore, the theory calculation indicates that the Ni and Co sites of NiCo2O4-NiCo(OH)x are the catalytic centers for the HER process. Our new plasma-enabled approach for the controlled production of bimetallic hydroxide-oxide active nanointerfaced systems is generic and is potentially suitable for diverse materials systems and applications well beyond electrocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...