Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Cancer Gene Ther ; 31(3): 454-463, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38135697

ABSTRACT

Nasopharyngeal carcinoma (NPC) originates in the epithelial cells of the nasopharynx and is a common malignant tumor in southern China and Southeast Asia. Metastasis of NPC remains the main cause of death for NPC patients even though the tumor is sensitive to radiotherapy and chemotherapy. Here, we found that the transmembrane protein tetraspanin1 (TSPAN1) potently inhibited the in vitro migration and invasion, as well as, the in vivo metastasis of NPC cells via interacting with the IKBB protein. In addition, TSPAN1 was essential in preventing the overactivation of the NF-kB pathway in TSPAN1 overexpressing NPC cells. Furthermore, reduced TSPAN1 expression was associated with NPC metastasis and the poor prognosis of NPC patients. These results uncovered the suppressive role of TSPAN1 against NF-kB signaling in NPC cells for preventing NPC metastasis. Its therapeutic value warrants further investigation.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , Nasopharyngeal Neoplasms/metabolism , Cell Line, Tumor , Signal Transduction , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Tetraspanins/genetics , Tetraspanins/metabolism
2.
Front Biosci (Landmark Ed) ; 28(9): 212, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37796690

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly lethal tumor type, but studies on the ESCC tumor microenvironment are limited. We found that cystatin SN (CST1) plays an important role in the ESCC tumor microenvironment. CST1 has been reported to act as an oncogene in multiple human cancers, but its clinical significance and underlying mechanism in ESCC remain elusive. METHODS: We performed ESCC gene expression profiling with data from RNA-sequencing and public databases and found CST1 upregulation in ESCC. Then, we assessed CST1 expression in ESCC by RT‒qPCR and Western blot analysis. In addition, immunohistochemistry (IHC) and enzyme-linked immunosorbent assay (ELISA) were used to estimate the expression of CST1 in ESCC tissue and serum. Moreover, further functional experiments were conducted to verify that the gain and loss of CST1 in ESCC cell lines significantly influenced the proliferation and metastasis of ESCC. Mass spectrometry, coimmunoprecipitation, and gelatin zymography experiments were used to validate the interaction between CST1 and matrix metalloproteinase 2 (MMP2) and the mechanism of CST1 influence on metastasis in ESCC. RESULTS: Here, we found that CST1 expression was significantly elevated in ESCC tissues and serum. Moreover, compared with patients with low CST1 expression, patients with high CST1 expression had a worse prognosis. Overall survival (OS) and disease-free survival (DFS) were significantly unfavorable in the high CST1 expression subgroup. Likewise, the CST1 level was significantly increased in ESCC serum compared with healthy control serum, indicating that CST1 may be a potential serum biomarker for diagnosis, with an area under the curve (AUC) = 0.9702 and p < 0.0001 by receiver operating curve (ROC) analysis. Furthermore, upregulated CST1 can promote the motility and metastatic capacity of ESCC in vitro and in vivo by influencing epithelial mesenchymal transition (EMT) and interacting with MMP2 in the tumor microenvironment (TME). CONCLUSIONS: Collectively, the results of this study indicated that high CST1 expression mediated by SPI1 in ESCC may serve as a potentially prognostic and diagnostic predictor and as an oncogene to promote motility and metastatic capacity of ESCC by influencing EMT and interacting with MMP2 in the TME.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Carcinoma, Squamous Cell/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Up-Regulation , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition , Tumor Microenvironment/genetics
3.
Drug Dev Res ; 84(7): 1468-1481, 2023 11.
Article in English | MEDLINE | ID: mdl-37534761

ABSTRACT

Distant metastasis is the primary reason for treatment failure in patients with nasopharyngeal carcinoma (NPC). In this study, we investigated the effect of ulinastatin (UTI) on NPC metastasis and its underlying mechanism. Highly-metastatic NPC cell lines S18 and 58F were treated with UTI and the effect on cell proliferation, migration, and invasion were determined by MTS and Transwell assays. S18 cells with luciferase-expressing (S18-1C3) were injected into the left hind footpad of nude mice to establish a model of spontaneous metastasis from the footpad to popliteal lymph node (LN). The luciferase messenger RNA (mRNA) was measured by quantitative polymerase chain reaction (qPCR), and the metastasis inhibition rate was calculated. Key molecular members of the UTI-related uPA, uPAR, and JAT/STAT3 signaling pathways were detected by qPCR and immunoblotting. UTI suppressed the migration and infiltration of S18 and 5-8F cells and suppressed the metastasis of S18 cells in vivo without affecting cell proliferation. uPAR expression decreased from 24 to 48 h after UTI treatment. The antimetastatic effect of UTI is partly due to the suppression of uPA and uPAR. UTI partially suppresses NPC metastasis by downregulating the expression of uPA and uPAR.


Subject(s)
Nasopharyngeal Neoplasms , Animals , Mice , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Mice, Nude , Cell Line, Tumor , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/pathology , Luciferases , Cell Movement , Neoplasm Invasiveness , Neoplasm Metastasis
4.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166696, 2023 06.
Article in English | MEDLINE | ID: mdl-36963524

ABSTRACT

BACKGROUND: Metastasis is one of the main obstacles impeding the survival of nasopharyngeal carcinoma (NPC) patients, with the molecular mechanism underlying NPC metastasis still unclear. RESULTS: In this study, Cystatin A (CSTA) was found downregulated in NPC tissues with metastasis compared with those without metastasis. Shorter overall survival and distant metastasis-free survival were found in NPC patients with lower CSTA expression. Using functional assays, we found that CSTA prevented both the in vitro motility of NPC cells and their ability to metastasize in vivo. Transcriptome sequencing and western blot analysis revealed that CSTA inhibited the phosphorylation of AKT. Moreover, activating AKT using AKT agonist SG79 rescued the motility of CSTA-overexpressing NPC cells, whereas, treatment with AKT inhibitor MK2206 inhibited the motility of CSTA-knockdown NPC cells. Mechanically, immunoprecipitation coupled mass spectrometry found that CSTA interacted with the N6-adenosine-methyltransferase subunit METTL3 and promoted its ubiquitin-proteasome-mediated degradation following the upregulation of NKX3-1 and LHPP, which are negative regulators of AKT. Furthermore, knock-down of NKX3-1 and LHPP enhanced the motility of CSTA-overexpressing NPC cells. CONCLUSIONS: The inhibitory effect of CSTA upon NPC metastasis mainly depended on suppressing AKT signaling by the upregulation of NKX3-1 and LHPP expression resulting from the binding between CSTA and METLL3. Our study suggests that the CSTA-METLL3-NKX3-1/LHPP-AKT axis could be of therapeutic value for inhibiting NPC metastasis.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Humans , Carcinoma/pathology , Cystatin A , Epithelial-Mesenchymal Transition , Methyltransferases , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism
5.
Microbiol Spectr ; 11(1): e0493222, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36622166

ABSTRACT

The immune regulator galectin-9 (Gal-9) is commonly involved in the regulation of cell proliferation, but with various impacts depending on the cell type. Here, we revealed that Gal-9 expression was persistently increased in Epstein-Barr virus (EBV)-infected primary B cells from the stage of early infection to the stage of mature lymphoblastoid cell lines (LCLs). This sustained upregulation paralleled that of gene sets related to cell proliferation, such as oxidative phosphorylation, cell cycle activation, and DNA replication. Knocking down or blocking Gal-9 expression obstructed the establishment of latent infection and outgrowth of EBV-infected B cells, while exogenous Gal-9 protein promoted EBV acute and latent infection and outgrowth of EBV-infected B cells at the early infection stage. Mechanically, stimulator of interferon gene (STING) activation or signal transducer and activator of transcription 3 (STAT3) inhibition impeded the outgrowth of EBV-infected B cells and promotion of Gal-9-induced lymphoblastoid cell line (LCL) transformation. Accordingly, Gal-9 expression was upregulated by forced EBV nuclear antigen 1 (EBNA1) expression in 293T cells in vitro. Clinical data showed that Gal-9 expression in B-cell lymphomas (BCLs) correlated positively with EBNA1 and disease stage. Targeting Gal-9 slowed LCL tumor growth and metastasis in xenografted immunodeficient mice. These findings highlight an oncogenic role of Gal-9 in EBV-associated BCLs, indicating that Gal-9 boosts the transformation of EBV-infected B cells. IMPORTANCE The cross talk between Epstein-Barr virus (EBV) and the host cell transcriptome assumes important roles in the oncogenesis of EBV-associated malignancies. Here, we first observed that endogenous Gal-9 expression was persistently increased along with an overturned V-type change in antivirus signaling during the immortalization of EBV-transformed B cells. Upregulation of Gal-9 promoted the outgrowth and latent infection of EBV-infected B cells, which was linked to B-cell-origin tumors by suppressing STING signaling and subsequently promoting STAT3 phosphorylation. EBV nuclear antigen EBNA1 induced Gal-9 expression and formed a positive feedback loop with Gal-9 in EBV-infected B cells. Tumor Gal-9 levels were positively correlated with disease stage and EBNA1 expression in patients with B-cell lymphomas (BCLs). Targeting Gal-9 slowed the growth and metastases of LCL tumors in immunodeficient mice. Altogether, our findings indicate that Gal-9 is involved in the lymphomagenesis of EBV-positive BCLs through cross talk with EBNA1 and STING signals.


Subject(s)
Epstein-Barr Virus Infections , Latent Infection , Lymphoma, B-Cell , Animals , Humans , Mice , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics
6.
Cancer Gene Ther ; 30(2): 375-387, 2023 02.
Article in English | MEDLINE | ID: mdl-36357564

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in China. However, there are no targets to treat ESCC because the molecular mechanism behind the cancer is still unclear. Here, we found a novel long noncoding RNA LINC02820 was upregulated in ESCC and associated with the ESCC clinicopathological stage. Through a series of functional experiments, we observed that LINC02820 only promoted the migration and invasion capabilities of ESCC cell lines. Mechanically, we found that LINC02820 may affect the cytoskeletal remodeling, interact with splice factor 3B subunit 3 (SF3B3), and cooperate with TNFα to amplify the NF-κB signaling pathway, which can lead to ESCC metastasis. Overall, our findings revealed that LINC02820 is a potential biomarker and therapeutic target for the diagnosis and treatment of ESCC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , RNA, Long Noncoding , Humans , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Line, Tumor , Signal Transduction , Cytoskeleton/genetics , Cytoskeleton/metabolism , Cytoskeleton/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
7.
Front Oncol ; 13: 1171932, 2023.
Article in English | MEDLINE | ID: mdl-38304027

ABSTRACT

Background: Hepatocellular carcinoma (HCC) continues to increase in morbidity and mortality among all types of cancer. DNA methylation, an important epigenetic modification, is associated with cancer occurrence and progression. The objective of this study was to establish a model based on DNA methylation risk scores for identifying new potential therapeutic targets in HCC and preventing cancer progression. Methods: Transcriptomic, clinical, and DNA methylation data on 374 tumor tissues and 50 adjacent normal tissues were downloaded from The Cancer Genome Atlas-Liver Hepatocellular Carcinoma database. The gene expression profiles of the GSE54236 liver cancer dataset, which contains data on 161 liver tissue samples, were obtained from the Gene Expression Omnibus database. We analyzed the relationship between DNA methylation and gene expression levels after identifying the differentially methylated and expressed genes. Then, we developed and validated a risk score model based on the DNA methylation-driven genes. A tissue array consisting of 30 human hepatocellular carcinoma samples and adjacent normal tissues was used to assess the protein and mRNA expression levels of the marker genes by immunohistochemistry and qRT-PCR, respectively. Results: Three methylation-related differential genes were identified in our study: GLS, MEX3B, and GNA14. The results revealed that their DNA methylation levels were negatively correlated with local gene expression regulation. The gene methylation levels correlated strongly with the prognosis of patients with liver cancer. This was confirmed by qRT-PCR and immunohistochemical verification of the expression of these genes or proteins in tumors and adjacent tissues. These results revealed the relationship between the level of relevant gene methylation and the prognosis of patients with liver cancer as well as the underlying cellular and biological mechanisms. This allows our gene signature to provide more accurate and appropriate predictions for clinical applications. Conclusion: Through bioinformatics analysis and experimental validation, we obtained three DNA methylation marker: GLS, MEX3B, and GNA14. This helps to predict the prognosis and may be a potential therapeutic target for HCC patients.

8.
Med Phys ; 49(10): 6728-6738, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35959736

ABSTRACT

PURPOSE: Ultra-high dose rate FLASH irradiation (FLASH-IR) has been shown to cause less normal tissue damage compared with conventional irradiation (CONV-IR), this is known as the "FLASH effect." It has attracted immense research interest because its underlying mechanism is scarcely known. The purpose of this study was to determine whether FLASH-IR and CONV-IR induce differential inflammatory cytokine expression using a modified clinical linac. MATERIALS AND METHODS: An Elekta Synergy linac was used to deliver 6 MeV CONV-IR and modified to deliver FLASH-IR. Female FvB mice were randomly assigned to three different groups: a non-irradiated control, CONV-IR, or FLASH-IR. The FLASH-IR beam was produced by single pulses repeated manually with a 20-s interval (Strategy 1), or single-trigger multiple pulses with a 10 ms interval (Strategy 2). Mice were immobilized in the prone position in a custom-designed applicator with Gafchromic films positioned under the body. The prescribed doses for the mice were 6 to 18 Gy and verified using Gafchromic films. Cytokine expression of three pro-inflammatory cytokines (tumor necrosis factor-α [TNF-α], interferon-γ [IFN-γ], interleukin-6 [IL-6]) and one anti-inflammatory cytokine (IL-10) in serum samples and skin tissue were examined within 1 month post-IR. RESULTS: The modified linac delivered radiation at an intra-pulse dose rate of around 1 × 106 Gy/s and a dose per pulse over 2 Gy at a source-to-surface distance (SSD) of 13 to 15 cm. The achieved dose coverage was 90%-105% of the maximum dose within -20 to 20 mm in the X direction and 95% within -30 to 30 mm in the Y direction. The absolute deviations between the prescribed dose and the actual dose were 2.21%, 6.04%, 2.09%, and 2.73% for 6, 9, 12, and 15 Gy as measured by EBT3 films, respectively; and 4.00%, 4.49%, and 2.30% for 10, 14, and 18 Gy as measured by the EBT XD films, respectively. The reductions in the CONV-IR versus the FLASH-IR group were 4.89%, 10.28%, -7.8%, and -22.17% for TNF-α, IFN-γ, IL-6, and IL-10 in the serum on D6, respectively; 37.26%, 67.16%, 56.68%, and -18.95% in the serum on D31, respectively; and 62.67%, 35.65%, 37.75%, and -12.20% for TNF-α, IFN-γ, IL-6, and IL-10 in the skin tissue, respectively. CONCLUSIONS: Ultra-high dose rate electron FLASH caused lower pro-inflammatory cytokine levels in serum and skin tissue which might mediate differential tissue damage between FLASH-IR and CONV-IR.


Subject(s)
Interleukin-10 , Tumor Necrosis Factor-alpha , Animals , Electrons , Female , Interferon-gamma , Interleukin-6 , Mice
9.
Article in English | MEDLINE | ID: mdl-35178106

ABSTRACT

BACKGROUND: The occurrence and development of hepatocellular carcinoma (HCC) are closely related to immune function, as is the capacity of hepatoma cells to escape. Immunosurveillance is a key mechanism. Catgut implantation at acupoint (CIAA) is a promising acupuncture improvement method that can regulate immunity and has been widely used in the clinical treatment of a variety of diseases. The aim of this study is to observe the therapeutic effect of CIAA on HCC and to investigate the potential mechanism of immune escape. MATERIALS AND METHODS: A total of 40 mice were randomly divided into three groups: the HCC model group (n = 15), the CIAA treatment group (n = 15), and the control group (n = 10). HCC was chemically induced in 30 mice by the combination of DEN, carbon tetrachloride, and ethanol for 150 days. Among them, 15 were selected for CIAA treatment to ascertain the therapeutic effect. The mRNA expression levels of AFP, IL-10, PD-1, and CTLA-4 in three groups were examined by using RT-PCR. AFP and AKT expressions were measured by using western blotting. PD1, CTLA-4, IL-10, CD4+, and CD8+ protein expression levels were evaluated by using IHC. The mortality rate, body weight, and psychological conditions of three groups were also compared. RESULTS: The mRNA and protein expression levels of AFP, PD-1, CTLA-4, and IL-10 were significantly downregulated in the CIAA-treated mice in comparison with HCC mice. IHC assay shows that CD4+ and CD8+ expression levels were notably upregulated after CIAA treatment. Western blotting assay shows that AKT pathway was deactivated in CIAA-treated mice. CIAA notably reduced the mortality rate and inhibited weight loss caused by HCC and improved the overall psychological condition of the mice. CONCLUSIONS: Taken together, our data corroborate the effective potency of CIAA in the treatment of HCC by and inhibiting immune escape and deactivating the AKT pathway.

10.
Aging (Albany NY) ; 13(17): 21758-21777, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34520390

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a malignant tumor that commonly occurs worldwide. Usually, Asia, especially China, has a high incidence of esophageal cancer. ESCC often has a poor outcome because of a late diagnosis and lack of effective treatments. To build foundations for the early diagnosis and treatment of ESCC, we used the gene expression datasets GSE20347 and GSE17351 from the GEO database and a private dataset to uncover differentially expressed genes (DEGs) and key genes in ESCC. Notably, we found that replication factor C subunit 4 (RFC4) and guanine monophosphate synthase (GMPS) were upregulated but have been rarely studied in ESCC. In particular, to the best of our knowledge, our study is the first to explore GMPS and ESCC. Furthermore, we found that high levels of RFC4 and GMPS expression may result from an increase in DNA copy number alterations. Furthermore, RFC4 and GMPS were both upregulated in the early stage and early nodal metastases of esophageal carcinoma. The expression of RFC4 was strongly correlated with GMPS. In addition, we explored the relationship between RFC4 and GMPS expression and tumor-infiltrating immune cells (TILs) in esophageal carcinoma. The results showed that the levels of RFC4 and GMPS increased with a decrease in some tumor-infiltrating cells. Upregulated RFC4 and GMPS with high TILs indicate a worse prognosis. In summary, our study shows that RFC4 and GMPS have potential as biomarkers for the early diagnosis of ESCC and may played a crucial role in the process of tumor immunity in ESCC.


Subject(s)
Computational Biology/methods , DNA Copy Number Variations , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Guanosine Monophosphate/genetics , Replication Protein C/genetics , Thionucleotides/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , Datasets as Topic , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Guanosine Monophosphate/metabolism , Humans , Male , Middle Aged , Prognosis , ROC Curve , Replication Protein C/metabolism , Thionucleotides/metabolism , Up-Regulation
12.
Cancer Lett ; 498: 165-177, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33152401

ABSTRACT

Nasopharyngeal carcinoma (NPC) originates in the nasopharyngeal epithelium and has the highest metastatic rate among head and neck cancers. Distant metastasis is the main reason for treatment failure with the underlying mechanisms remaining unclear. By comparing the expression profiling of NPCs versus non-cancerous nasopharyngeal tissues, we found LACTB was highly expressed in the tumor tissues. We found that elevated expression of the LACTB protein in primary NPCs correlated with poorer patient survival. LACTB is known to be a serine protease and a ubiquitous mitochondrial protein localized in the intermembrane space. Its role in tumor biology remains controversial. We found that the different methylation pattern of LACTB promoter led to its differential expression in NPC cells. Overexpressing LACTB in NPC cells promoted their motility in vitro and metastasis in vivo. While knocking down LACTB reduced the metastasis capability of NPC cells. However, LACTB did not influence cellular proliferation. We further found the role of LACTB in promoting NPC metastasis depended on the activation of ERBB3/EGFR-ERK signaling, which in turn, affected the stability and the following acetylation of histone H3. These findings may shed light on unveiling the mechanisms of NPC metastasis.


Subject(s)
MAP Kinase Signaling System/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Neoplasm Metastasis/genetics , Receptor, ErbB-3/genetics , Signal Transduction/genetics , beta-Lactamases/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , ErbB Receptors/genetics , Female , Humans , Mice , Mice, Nude , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Neoplasm Metastasis/pathology , Promoter Regions, Genetic/genetics
13.
BMJ Open ; 10(11): e037150, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33172940

ABSTRACT

OBJECTIVES: Geographical disparities have been identified as a specific barrier to cancer screening and a cause of worse outcomes for patients with cancer. In the present study, our aim was to assess the influence of geographical disparities on the survival outcomes of patients with nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). DESIGN: Cohort study. SETTING: Guangzhou, China. PARTICIPANTS: A total of 1002 adult patients with NPC (724 males and 278 females) who were classified by area of residence (rural or urban) received IMRT from 1 January 2010 to 31 December 2014, at Sun Yat-sen University Cancer Center. Following propensity score matching (PSM), 812 patients remained in the analysis. MAIN OUTCOME MEASURES: We used PSM to reduce the bias of variables associated with treatment effects and outcome prediction. Survival outcomes were estimated using the Kaplan-Meier method and compared by the log-rank test. Multivariate Cox regression was used to identify independent prognostic factors. RESULTS: In the matched cohort, 812 patients remained in the analysis. Kaplan-Meier survival analysis revealed that the rural group was significantly associated with worse overall survival (OS, p<0.001), disease-free survival (DFS, p<0.001), locoregional relapse-free survival (LRRFS, p=0.003) and distant metastasis-free survival (DMFS, p<0.001). Multivariate Cox regression showed worse OS (HR=3.126; 95% CI 1.902 to 5.138; p<0.001), DFS (HR=2.579; 95% CI 1.815 to 3.665; p<0.001), LRRFS (HR=2.742; 95% CI 1.359 to 5.533; p=0.005) and DMFS (HR=2.461; 95% CI 1.574 to 3.850; p<0.001) for patients residing in rural areas. CONCLUSIONS: The survival outcomes of patients with NPC who received the same standardised treatment were significantly better in urban regions than in rural regions. By analysing the geographic disparities in outcomes for NPC, we can guide the formulation of healthcare policies.


Subject(s)
Carcinoma , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Adult , Carcinoma/radiotherapy , China/epidemiology , Cohort Studies , Female , Humans , Male , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/radiotherapy , Neoplasm Recurrence, Local , Prognosis , Retrospective Studies
14.
J Cell Mol Med ; 24(17): 9999-10012, 2020 09.
Article in English | MEDLINE | ID: mdl-32678482

ABSTRACT

The aldo-keto reductases family 1 member C2 (AKR1C2) has critical roles in the tumorigenesis and progression of malignant tumours. However, it was also discovered to have ambiguous functions in multiple cancers and till present, its clinical significance and molecular mechanism in oesophageal squamous cell carcinoma (ESCC) has been unclear. The aim of this study was to explore the role of AKR1C2 in the tumorigenesis of ESCC. Here, we showed that AKR1C2 expression was found to be up-regulated in ESCC tissues and was significantly associated with pathological stage, lymph node metastasis and worse outcomes. Functional assays demonstrated that an ectopic expression of AKR1C2 in ESCC cells resulted in increased proliferation, migration and cisplatin resistance, while knockdown led to inversing effects. Bioinformation analyses and mechanistic studies demonstrated that AKR1C2 activated the PI3K/AKT signalling pathway, furthermore, the inhibitor of PI3K or the selective inhibitor of AKR1C2 enzyme activity could reverse the aggressiveness and showed synergistic antitumour effect when combined with cisplatin, both in vitro and in vivo. In conclusion, Our findings revealed that AKR1C2 could function as an oncogene by activating the PI3K/AKT pathway, as a novel prognostic biomarker and/or as a potential therapeutic target to ESCC.


Subject(s)
Esophageal Squamous Cell Carcinoma/genetics , Hydroxysteroid Dehydrogenases/genetics , Oncogenes/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/genetics , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cisplatin/therapeutic use , Drug Resistance, Neoplasm/genetics , Esophageal Squamous Cell Carcinoma/drug therapy , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphatic Metastasis/genetics , Male , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Up-Regulation/genetics
15.
Oncogene ; 39(30): 5307-5322, 2020 07.
Article in English | MEDLINE | ID: mdl-32555330

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a unique head and neck cancer with highly aggressive and metastatic potential in which distant metastasis is the main reason for treatment failure. Till present, the underlying molecular mechanisms of NPC metastasis remains poorly understood. Here, we identified S100 calcium-binding protein A14 (S100A14) as a functional regulator suppressing NPC metastasis by inhibiting the NF-kB signaling pathway and reversing the epithelial-mesenchymal transition (EMT). S100A14 was found to be downregulated in highly metastatic NPC cells and tissues. Immunohistochemical staining of 202 NPC samples revealed that lower S100A14 expression was significantly correlated with shorter patient overall survival (OS) and distant metastasis-free survival (DMFS). S100A14 was also found as an independent prognostic factor for favorable survival. Gain- and loss-of-function studies confirmed that S100A14 suppressed the in vitro and in vivo motility of NPC cells. Mechanistically, S100A14 promoted the ubiquitin-proteasome-mediated degradation of interleukin-1 receptor-associated kinase 1 (IRAK1) to suppress NPC cellular migration. Moreover, S100A14 and IRAK1 established a feedback loop that could be disrupted by the IRAK1 inhibitor T2457. Overall, our findings showed that the S100A14-IRAK1 feedback loop could be a promising therapeutic target for NPC metastasis.


Subject(s)
Calcium-Binding Proteins/genetics , Interleukin-1 Receptor-Associated Kinases/genetics , Lung Neoplasms/genetics , NF-kappa B/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , Animals , Calcium-Binding Proteins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Mice, Nude , NF-kappa B/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Proteasome Endopeptidase Complex/metabolism , RNA Interference , Signal Transduction/genetics , Survival Analysis
16.
Biochem Biophys Res Commun ; 527(3): 770-777, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32446561

ABSTRACT

Nasopharyngeal carcinoma (NPC) is relatively sensitive to ionizing radiation, and radiotherapy is the main treatment modality for non-metastatic NPC. Radiation therapy generates overproduction of reactive oxygen species (ROS), which can cause DNA damage and induce apoptosis in tumors, thereby killing the malignant cells. Although dietary antioxidant supplementation reduces oxidative stress and promotes tumor progression, the effects of antioxidants on the NPC cells upon radiation have not been reported. In the present study, we showed that antioxidants (ß-Carotene, NAC, GSH) played an anti-apoptotic role in response to radiation via decreasing ROS production and inhibiting MAPK pathway in NPC cells. Based on that, we conclude that the use of supplemental antioxidants during radiotherapy should be avoided because of the possibility of tumor protection and reduced treatment efficacy.


Subject(s)
Antioxidants/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , MAP Kinase Signaling System/drug effects , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Neoplasms/radiotherapy , Cell Line, Tumor , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/metabolism , Reactive Oxygen Species/metabolism
17.
Cancer Lett ; 482: 74-89, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32305558

ABSTRACT

Distant metastasis is the major cause of short survival in ccRCC patients. However, the development of effective therapies for metastatic ccRCC is limited. Herein, we reported that ETV4 was selected from among 150 relevant genes with in vivo evidence of promoting metastasis. In this study, we identified that ETV4 promoted ccRCC cell migration and metastasis in vitro and in vivo, and a positive correlation between ETV4 and FOSL1 expression was found in ccRCC tissues and cell lines. Further investigation suggested that ETV4 increase FOSL1 expression through direct binding with the FOSL1 promoter. Furthermore, ETV4/FOSL1 was proved as a novel upstream and downstream causal relationship in ccRCC in an AKT dependent manner. In addition, both ETV4 and FOSL1 serve as an independent, unfavorable ccRCC prognostic indicator, and the accumulation of the ETV4 and FOSL1 in ccRCC patients result in a worse survival outcome in ccRCC patients. Taken together, our results suggest that the ETV4/FOSL1 axis acts as a prognostic biomarker and ETV4 directly up-regulates FOSL1 by binding with its promoter in a PI3K-AKT dependent manner, leading to metastasis and disease progression of ccRCC.


Subject(s)
Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-fos/genetics , Up-Regulation , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Movement , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Neoplasm Transplantation , Phosphatidylinositol 3-Kinases/metabolism , Precision Medicine , Prognosis , Promoter Regions, Genetic , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-ets/metabolism , Signal Transduction , Survival Analysis
18.
Mol Cancer Res ; 18(6): 903-912, 2020 06.
Article in English | MEDLINE | ID: mdl-32169891

ABSTRACT

The underlying molecular mechanism driving clear cell renal cell carcinoma (ccRCC) progression is still to be explored. The significant downregulation of protein tyrosine phosphatase nonreceptor type 3 (PTPN3) expression in the tumor tissues suggested its protective role in ccRCC progression. IHC analysis of PTPN3 protein in 172 ccRCC tissue revealed that PTPN3 was an independently favorable prognostic factor for progression-free survival (P = 0.0166) and overall survival (P = 0.0343) of patients. The ccRCC cell lines SN12C, 1932, ACHN, and Caki-1 were used to evaluate, both in vitro and in vivo, the biological roles of PTPN3. We observed that overexpression of PTPN3 significantly inhibited the proliferation, migration, and invasion of ccRCC cells. In contrast, the knocking down of PTPN3 elicited opposite effects. Overexpressing PTPN3 inhibited xenograft tumor growth and lung metastasis displayed by the in vivo mice models. PTPN3 inhibited tumor cell motility by suppressing the phosphorylation of AKT, and subsequently inactivating the PI3K/AKT signaling pathway of renal cell carcinoma cells. Furthermore, the inhibition of phospho-AKTThr308 and phospho-AKTSer473 reversed PTPN3-induced silencing in tumor cell migration. Our work revealed that the overexpression of PTPN3 could suppress kidney cancer progression by negatively regulating the AKT signaling pathway, and served as a favorable prognostic factor in patients with ccRCC. Our findings provided insight that PTPN3 could be a potential target for therapy aiming to inhibit the malignant behaviors of ccRCC. IMPLICATIONS: PTPN3 is an independent favorable prognostic factor for patients with ccRCC and could be a potential target for therapy aiming to inhibit the malignant behaviors of ccRCC.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/prevention & control , Gene Expression Regulation, Neoplastic , Kidney Neoplasms/prevention & control , Phosphatidylinositol 3-Kinases/chemistry , Protein Tyrosine Phosphatase, Non-Receptor Type 3/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Apoptosis , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/secondary , Case-Control Studies , Cell Movement , Cell Proliferation , Female , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Male , Mice , Mice, Nude , Middle Aged , Neoplasm Invasiveness , Phosphorylation , Prognosis , Protein Tyrosine Phosphatase, Non-Receptor Type 3/genetics , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
19.
Cancer Manag Res ; 11: 5557-5572, 2019.
Article in English | MEDLINE | ID: mdl-31417306

ABSTRACT

Background/Aims: The tumor-suppressive functions of interferon regulatory factor 6 (IRF6) in some tumors have been preliminarily established, but its pathogenesis and underlying molecular mechanisms in breast cancer, the most common malignancy in women, remains poorly understood. Methods: Pairs of typical breast cancer cell lines (high- and low-aggressive) in addition to 27 breast cancer tissue samples and 31 non-cancerous breast tissues were used to investigate the expression level of IRF6 and Lentivirus-mediated gain-of-function studies, short hairpin RNA-mediated loss-of-function studies in vivo and in vitro were used to validate the role of IRF6 in breast cancer. Next, we performed RNA-Seq analysis to identify the molecular mechanisms of IRF6 involved in breast cancer progression. Results: Our findings showed that IRF6 was downregulated in highly invasive breast cancer cell lines but upregulated in poorly aggressive ones. Functional assays revealed that elevated IRF6 expression could suppress cell proliferation and tumorigenicity, and enhanced cellular chemotherapeutic sensitivity. To identify the molecular mechanisms involved, we performed a genome-wide and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis in breast cancer cells using RNA sequencing of gene expression profiles following the overexpression of IRF6. Genome-wide and KEGG analyses showed that IRF6 might mediate the PI3K-regulatory subunit PIK3R2, which in turn modulated the PI3K/AKT pathway to control breast cancer pathogenesis. Conclusion: We provide the first evidence of the involvement of IRF6 in breast cancer pathogenesis, which was found to modulate the PI3K/AKT pathway via mediating PIK3R2; indicating that IRF6 can be targeted as a potential therapeutic treatment of breast cancer.

20.
J Exp Clin Cancer Res ; 38(1): 152, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30961661

ABSTRACT

BACKGROUND: With the rapid development of the high throughput detection techniques, tumor-related Omics data has become an important source for studying the mechanism of tumor progression including breast cancer, one of the major malignancies worldwide. A previous study has shown that the G2 and S phase-expressed-1 (GTSE1) can act as an oncogene in several human cancers. However, its functional roles in breast cancer remain elusive. METHOD: In this study, we analyzed breast cancer data downloaded from The Cancer Genome Atlas (TCGA) databases and other online database including the Oncomine, bc-GenExMiner and PROGgeneV2 database to identify the molecules contributing to the progression of breast cancer. The GTSE1 expression levels were investigated using qRT-PCR, immunoblotting and IHC. The biological function of GTSE1 in the growth, migration and invasion of breast cancer was examined in MDA-MB-231, MDA-MB-468 and MCF7 cell lines. The in vitro cell proliferative, migratory and invasive abilities were evaluated by MTS, colony formation and transwell assay, respectively. The role of GTSE1 in the growth and metastasis of breast cancer were revealed by in vivo investigation using BALB/c nude mice. RESULTS: We showed that the expression level of GTSE1 was upregulated in breast cancer specimens and cell lines, especially in triple negative breast cancer (TNBC) and p53 mutated breast cancer cell lines. Importantly, high GTSE1 expression was positively correlated with histological grade and poor survival. We demonstrated that GTSE1 could promote breast cancer cell growth by activating the AKT pathway and enhance metastasis by regulating the Epithelial-Mesenchymal transition (EMT) pathway. Furthermore, it could cause multidrug resistance in breast cancer cells. Interestingly, we found that GTSE1 could regulate the p53 function to alter the cell cycle distribution dependent on the mutation state of p53. CONCLUSION: Our results reveal that GTSE1 played a key role in the progression of breast cancer, indicating that GTSE1 could serve as a novel biomarker to aid in the assessment of the prognosis of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Microtubule-Associated Proteins/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Cycle/physiology , Cell Differentiation/physiology , Cell Line, Tumor , Disease Progression , Drug Resistance, Neoplasm , Female , Heterografts , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Microtubule-Associated Proteins/biosynthesis , Mutation , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...