Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(18): 13987-13994, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38683035

ABSTRACT

A series of zinc-magnesium mixed aluminosilicate glasses with the molar composition (1-r)MgO·rZnO·Al2O3·2.5SiO2, where r = 0.00, 0.25, 0.50, 0.65, 0.75, and 1.00, were fabricated to probe the effects of substitution of magnesium with zinc on crystallization behaviors. Based on the evolution of phase compositions as revealed by calorimetric behaviors and X-ray diffraction patterns, a series of transparent surface crystallized glasses ranging from high transparency for the pure Zn-end member to heavy translucency for the pure Mg-end member were fabricated through heat treatment at the first crystallization peak temperature for 20 min. With the substitution of Mg with Zn, the evolution of morphology unveiled by optical microscopy is ascribed to the alteration of crystal phases formed from the sole metastable Zn-ß quartz solid solution to the coexistence of polycrystal phases containing Zn-ß quartz solid solution, µ-cordierite, or α-cordierite. These findings are very helpful for optimizing the performance of crystallized aluminosilicate glasses.

2.
Proc Mach Learn Res ; 97: 2901-2910, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31497778

ABSTRACT

In many scientific fields, such as economics and neuroscience, we are often faced with nonstationary time series, and concerned with both finding causal relations and forecasting the values of variables of interest, both of which are particularly challenging in such nonstationary environments. In this paper, we study causal discovery and forecasting for nonstationary time series. By exploiting a particular type of state-space model to represent the processes, we show that nonstationarity helps to identify causal structure and that forecasting naturally benefits from learned causal knowledge. Specifically, we allow changes in both causal strengths and noise variances in the nonlinear state-space models, which, interestingly, renders both the causal structure and model parameters identifiable. Given the causal model, we treat forecasting as a problem in Bayesian inference in the causal model, which exploits the timevarying property of the data and adapts to new observations in a principled manner. Experimental results on synthetic and real-world data sets demonstrate the efficacy of the proposed methods.

3.
Netw Neurosci ; 3(2): 274-306, 2019.
Article in English | MEDLINE | ID: mdl-30793083

ABSTRACT

We test the adequacies of several proposed and two new statistical methods for recovering the causal structure of systems with feedback from synthetic BOLD time series. We compare an adaptation of the first correct method for recovering cyclic linear systems; Granger causal regression; a multivariate autoregressive model with a permutation test; the Group Iterative Multiple Model Estimation (GIMME) algorithm; the Ramsey et al. non-Gaussian methods; two non-Gaussian methods by Hyvärinen and Smith; a method due to Patel et al.; and the GlobalMIT algorithm. We introduce and also compare two new methods, Fast Adjacency Skewness (FASK) and Two-Step, both of which exploit non-Gaussian features of the BOLD signal. We give theoretical justifications for the latter two algorithms. Our test models include feedback structures with and without direct feedback (2-cycles), excitatory and inhibitory feedback, models using experimentally determined structural connectivities of macaques, and empirical human resting-state and task data. We find that averaged over all of our simulations, including those with 2-cycles, several of these methods have a better than 80% orientation precision (i.e., the probability of a directed edge is in the true structure given that a procedure estimates it to be so) and the two new methods also have better than 80% recall (probability of recovering an orientation in the true structure).

4.
KDD ; 2018: 1551-1560, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30191079

ABSTRACT

Discovery of causal relationships from observational data is a fundamental problem. Roughly speaking, there are two types of methods for causal discovery, constraint-based ones and score-based ones. Score-based methods avoid the multiple testing problem and enjoy certain advantages compared to constraint-based ones. However, most of them need strong assumptions on the functional forms of causal mechanisms, as well as on data distributions, which limit their applicability. In practice the precise information of the underlying model class is usually unknown. If the above assumptions are violated, both spurious and missing edges may result. In this paper, we introduce generalized score functions for causal discovery based on the characterization of general (conditional) independence relationships between random variables, without assuming particular model classes. In particular, we exploit regression in RKHS to capture the dependence in a non-parametric way. The resulting causal discovery approach produces asymptotically correct results in rather general cases, which may have nonlinear causal mechanisms, a wide class of data distributions, mixed continuous and discrete data, and multidimensional variables. Experimental results on both synthetic and real-world data demonstrate the efficacy of our proposed approach.

5.
Adv Neural Inf Process Syst ; 31: 6266-6276, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30971863

ABSTRACT

We study the problem of causal structure learning in linear systems from observational data given in multiple domains, across which the causal coefficients and/or the distribution of the exogenous noises may vary. The main tool used in our approach is the principle that in a causally sufficient system, the causal modules, as well as their included parameters, change independently across domains. We first introduce our approach for finding causal direction in a system comprising two variables and propose efficient methods for identifying causal direction. Then we generalize our methods to causal structure learning in networks of variables. Most of previous work in structure learning from multi-domain data assume that certain types of invariance are held in causal modules across domains. Our approach unifies the idea in those works and generalizes to the case that there is no such invariance across the domains. Our proposed methods are generally capable of identifying causal direction from fewer than ten domains. When the invariance property holds, two domains are generally sufficient.

6.
IJCAI (U S) ; 2017: 1347-1353, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28966540

ABSTRACT

It is commonplace to encounter nonstationary or heterogeneous data, of which the underlying generating process changes over time or across data sets (the data sets may have different experimental conditions or data collection conditions). Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper we develop a principled framework for causal discovery from such data, called Constraint-based causal Discovery from Nonstationary/heterogeneous Data (CD-NOD), which addresses two important questions. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a way to determine causal orientations by making use of independence changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. Experimental results on various synthetic and real-world data sets are presented to demonstrate the efficacy of our methods.

7.
Proc IEEE Int Conf Data Min ; 2017: 913-918, 2017 Nov.
Article in English | MEDLINE | ID: mdl-31068766

ABSTRACT

We address two important issues in causal discovery from nonstationary or heterogeneous data, where parameters associated with a causal structure may change over time or across data sets. First, we investigate how to efficiently estimate the "driving force" of the nonstationarity of a causal mechanism. That is, given a causal mechanism that varies over time or across data sets and whose qualitative structure is known, we aim to extract from data a low-dimensional and interpretable representation of the main components of the changes. For this purpose we develop a novel kernel embedding of nonstationary conditional distributions that does not rely on sliding windows. Second, the embedding also leads to a measure of dependence between the changes of causal modules that can be used to determine the directions of many causal arrows. We demonstrate the power of our methods with experiments on both synthetic and real data.

SELECTION OF CITATIONS
SEARCH DETAIL
...