Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(10): 4531-4537, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35230091

ABSTRACT

The lateral diffusion of transmembrane proteins in cell membranes is an important process that controls the dynamics and functions of the cell membrane. Several fluorescence-based techniques have been developed to study the diffusivities of transmembrane proteins. However, it is challenging to measure the diffusivity of a transmembrane protein with slow diffusion because of the photobleaching effect caused by long exposure times or multiple exposures to light. In this study, we developed a cell membrane electrophoresis platform to measure diffusivity. We deposited cell membrane vesicles derived from HeLa cells to form supported cell membrane patches. We demonstrated that the electrophoresis platform can be used to drive the movement of not only a lipid probe but also a native transmembrane protein, GLUT1. The movements were halted by the boundaries of the membrane patches and the concentration profiles reached steady states when the diffusion mass flux was balanced with the electrical mass flux. We used the Nernst-Planck equation as the mass balance equation to describe the steady concentration profiles and fitted these equations to our data to obtain the diffusivities. The obtained diffusivities were comparable to those obtained by fluorescence recovery after photobleaching, suggesting the validity of this new method of diffusivity measurement. Only a single snapshot is required for the diffusivity measurement, addressing the problems associated with photobleaching and allowing researchers to measure the diffusivity of transmembrane proteins with slow diffusion.


Subject(s)
Membrane Proteins , Cell Membrane/chemistry , Diffusion , Electrophoresis , HeLa Cells , Humans , Membrane Proteins/metabolism
2.
Sci Rep ; 9(1): 7589, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31110216

ABSTRACT

Shewanella oneidensis MR-1, a bioelectricity generating bacterium, is broadly used in bioremediation, microbial fuel cell and dissimilatory reduction and recovery of precious metals. Herein, we report for the first time that photo induction as a trigger to stimulate gold nanoparticles (Au@NPs) formation by MR-1, with wavelength and light intensity as two key variables. Results indicated that sigmoidal model is the best fit for Au@NPs formation at various wavelengths (with R2 > 0.97). Light intensity in terms of photosynthetic photon flux density (PPFD) critically influences the rate constant in the low-light intensity region (PPFD < 20), while wavelength controls the maximum rate constant in the high-light region (PPFD > 20). By deletion of Mtr pathway genes in MR-1, we proposed the mechanism for light induced Au@NP formation is the excitation effect of light on certain active groups and extracellular polymeric substances (EPS) on the cell surface. Also, the release of electrons from proteins and co-enzyme complexes enhance electron generation. To the best of our knowledge, this is the first-attempt to explore the effect of photo-induction on Au@NPs production by MR-1, which provides an alternative cost-effective and eco-friendly process in green chemical industry.


Subject(s)
Gold/metabolism , Nanoparticles/metabolism , Shewanella/metabolism , Shewanella/radiation effects , Bioelectric Energy Sources , Electrons , Light , Nanoparticles/ultrastructure , Photochemical Processes , Photons , Shewanella/ultrastructure
3.
Front Chem ; 5: 127, 2017.
Article in English | MEDLINE | ID: mdl-29312931

ABSTRACT

The proteomics strategy was utilized to analyze and identify the gold adsorption proteins from Tepidimonas fonticaldi AT-A2, due to its outstanding performance in gold-binding and recovery. The results showed that three small proteins, including histidine biosynthesis protein (HisIE), iron donor protein (CyaY) and hypothetical protein_65aa, have a higher ability to adsorb gold ions because of the negatively charged domains or metal binding sites. On the other hand, the Salmonella PmrA/PmrB two-component system first replaces the iron (III)-binding motif using the peptide sequence from hypothetical protein_65aa, and this is then used to reveal the sensing and responsiveness to gold metal ions, which is totally different from the performance of traditional gold binding peptide (GBP) on the crystals on the surface of gold (111). We have successfully demonstrated an integrative proteomics and bacterial two-component system to explore the novel GBP. Finally, the heterologous over-expression of GBP by E. coli and the equilibrium of binding capacity for Au(III) have been conducted.

SELECTION OF CITATIONS
SEARCH DETAIL
...