Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Res ; 198: 106988, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37984507

ABSTRACT

Profiting from the sustained clinical improvement and prolonged patient survival, immune checkpoint blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis has emerged as a revolutionary cancer therapy approach. However, the anti-PD-1/PD-L1 antibodies only achieve a clinical response rate of approximately 20%. Herein, we identified a novel combination strategy that Chinese medicine ginseng-derived ginsenoside Rh2 (Rh2) markedly improved the anti-cancer efficacy of anti-PD-L1 antibody in mice bearing MC38 tumor. Rh2 combined with anti-PD-L1 antibody (combo treatment) further triggered the infiltration, proliferation and activation of CD8+ T cells in the tumor microenvironment (TME). Depletion of CD8+ T cells by mouse CD8 blocking antibody abolished the anti-cancer effect of combo treatment totally. Mechanistically, combo treatment further increased the expression of CXCL10 through activating TBK1-IRF3 signaling pathway, explaining the increased infiltration of T cells. Employing anti- CXC chemokine receptor 3 (CXCR3) blocking antibody prevented the T cells infiltration and abolished the anti-cancer effect of combo treatment. Meanwhile, combo treatment increased the percentage of M1-like macrophages and raised the ratio of M1/M2 macrophages in TME. By comparing the anti-cancer effect of combo treatment among MC38, CT26 and 4T1 tumors, resident T cells were considered as a prerequisite for the effectiveness of combo treatment. These findings demonstrated that Rh2 potentiated the anti-cancer effect of PD-L1 blockade via promoting the T cells infiltration and activation, which shed a new light on the combination strategy to enhance anti-PD-L1 immunotherapy by using natural product Rh2.


Subject(s)
B7-H1 Antigen , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , Cell Line, Tumor , Immunotherapy , Tumor Microenvironment , Chemokine CXCL10/pharmacology
2.
Front Med ; 17(1): 105-118, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36414917

ABSTRACT

The third-generation epidermal growth factor receptor (EGFR) inhibitor osimertinib (OSI) has been approved as the first-line treatment for EGFR-mutant non-small cell lung cancer (NSCLC). This study aims to explore a rational combination strategy for enhancing the OSI efficacy. In this study, OSI induced higher CD47 expression, an important anti-phagocytic immune checkpoint, via the NF-κB pathway in EGFR-mutant NSCLC HCC827 and NCI-H1975 cells. The combination treatment of OSI and the anti-CD47 antibody exhibited dramatically increasing phagocytosis in HCC827 and NCI-H1975 cells, which highly relied on the antibody-dependent cellular phagocytosis effect. Consistently, the enhanced phagocytosis index from combination treatment was reversed in CD47 knockout HCC827 cells. Meanwhile, combining the anti-CD47 antibody significantly augmented the anticancer effect of OSI in HCC827 xenograft mice model. Notably, OSI induced the surface exposure of "eat me" signal calreticulin and reduced the expression of immune-inhibitory receptor PD-L1 in cancer cells, which might contribute to the increased phagocytosis on cancer cells pretreated with OSI. In summary, these findings suggest the multidimensional regulation by OSI and encourage the further exploration of combining anti-CD47 antibody with OSI as a new strategy to enhance the anticancer efficacy in EGFR-mutant NSCLC with CD47 activation induced by OSI.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Acrylamides/pharmacology , ErbB Receptors/metabolism , Cell Line, Tumor , CD47 Antigen/metabolism , CD47 Antigen/therapeutic use
3.
Transl Oncol ; 14(9): 101162, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34171557

ABSTRACT

The anti-phagocytosis signal, CD47, prevents phagocytosis when it interacts with signal-regulatory protein alpha (SIRPα) on macrophages. Given the vital role of CD47 in immune response, further investigation on the regulation of CD47 in tumor microenvironment is needed. Herein, we identified that interferon-gamma (IFN-γ), one of the most important cytokines in the immune and inflammatory response, up-regulated CD47 expression in cancer cells and this effect could be inhibited by the JAK1/2 inhibitor ruxolitinib, as well as siRNA-mediated silencing of JAK1, STAT1, and IRF1. The IFN-γ-induced surface expression of CD47 contributed to a stronger binding affinity to SIRPα and a decrease in phagocytosis of cancer cells by macrophages. Knockdown of JAK1, STAT1, or IRF1 by siRNA reversed the decreased phagocytosis caused by IFN-γ. Besides, analysis from TCGA revealed that IFNG had a positive correlation with CD47 in various types of cancer, which was supported by the increased surface CD47 expression after IFN-γ treatment in different types of cancer cells. The discovery of IFN-γ-induced up-regulation of CD47 in cancer cells unveils another feedback inhibitory mechanism of IFN-γ, thus providing insights into cancer immunotherapy targeting CD47.

4.
Transl Oncol ; 13(12): 100862, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32920329

ABSTRACT

CD47 is overexpressed in various types of cancers and it can directly bind with SIRPα, which is mainly located on macrophages. The binding of CD47-SIRPα transmits a "don't eat me" signal, which can prevent cancer cells from immune clearance. Targeting the phagocytosis checkpoint of CD47-SIRPα axis has shown remarkable anticancer effect in preclinical and clinical research, which indicates the potential application of CD47-SIRPα blockade for cancer treatment. In this case, the comprehensive description of the regulation of CD47 in different types of cancer cells has significant implications for furthering our understanding of the role of CD47 in cancer. Based on the current reports, we summarized the regulatory factors, i.e., cytokines, oncogenes, microRNAs as well as enzymes, of CD47 expression in cancer cells. Accordingly, we also proposed several points needing further research, hoping to provide useful insights for the future investigation on the regulation of CD47 in cancers.

SELECTION OF CITATIONS
SEARCH DETAIL
...