Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Ecotoxicol Environ Saf ; 273: 116098, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38368757

ABSTRACT

Plastic waste accumulation and its degradation into microplastics (MPs) and nanoplastics (NPs) pose environmental concerns. Previous studies have indicated that polystyrene (PS)-MPs harm living animals. Extracellular vesicles (EVs) are associated with metabolic reprogramming and mitochondrial dysfunction in various kidney diseases. In this article, we evaluated how PS-MPs affected tubular cells and fibroblasts. The results demonstrated that PS-MPs increased EV production in human tubular cells and caused endoplasmic reticulum (ER) stress-related proteins without inducing inflammation-related proteins in human tubular cells. The uptake of PS-MPs and incubation with the conditioned medium of PS-MPs induced reactive oxygen species (ROS) production and ER stress-related proteins in fibroblast cells. The fibroblast cells treated with the conditioned medium of PS-MPs also increased the expression of fibrosis-related proteins. Our findings suggested that the expression of EV-related markers increased in tubular cells via Beclin 1 after PS-MP treatment. In addition, PS-MPs induced ROS production in vitro and in vivo. We found that PS-MPs also altered the expression of EV markers in urine, and CD63 expression was also increased in vitro and in vivo after PS-MP treatment. In conclusion, PS-MP-induced EVs lead to ER stress-related proteins, ROS production and fibrosis-related proteins in tubular cells and fibroblasts.


Subject(s)
Extracellular Vesicles , Microplastics , Animals , Humans , Microplastics/toxicity , Plastics , Polystyrenes/toxicity , Culture Media, Conditioned , Reactive Oxygen Species , Kidney , Fibroblasts , Fibrosis
2.
Exp Brain Res ; 242(3): 585-597, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38227007

ABSTRACT

Transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (DLPFC) has shown some potential as an adjunctive intervention for ameliorating negative symptoms of schizophrenia, but its efficacy requires optimization. Recently, 'functional targeting' of stimulation holds promise for advancing tDCS efficacy by coupling tDCS with a cognitive task where the target brain regions are activated by that task and further specifically polarized by tDCS.The study used 48-channel functional near infra-red spectroscopy (fNIRS) aiming to determine a cognitive task that can effectively induce a cortical activation of the left DLPFC in schizophrenia patients with predominant negative symptoms before running a tDCS trial. Sixty schizophrenia patients with predominant negative symptoms completed measures of clinical and psychosocial functioning characteristics and assessments across cognitive domains. Hemodynamic changes during n-back working memory tasks with different cognitive loads (1-back and 2-back) and verbal fluency test (VFT) were measured using fNIRS. For n-back tasks, greater signal changes were found when the task required elevated cognitive load. One sample t-test revealed that only 2-back task elicited significant activation in left DLPFC (t = 4.23, FDR-corrected p = 0.0007). During VFT, patients failed to show significant task-related activity in left DLPFC (one sample t-test, t = -0.25, FDR-corrected p > 0.05). Our study implies that 2-back task can effectively activate left DLPFC in schizophrenia patients with predominant negative symptoms. This neurophysiologically-validated task is considered highly potential to be executed in conjunction with high-definition tDCS for "functional targeting" of the left DLPFC to treat negative symptoms in a double-blind randomized sham-control trial, registered on ClinicalTrials.gov Registry (ID: NCT05582980).


Subject(s)
Schizophrenia , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Dorsolateral Prefrontal Cortex , Schizophrenia/therapy , Prefrontal Cortex/physiology , Spectrum Analysis , Double-Blind Method
3.
Ecotoxicol Environ Saf ; 258: 114987, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37172407

ABSTRACT

The burning incense (BI) behavior could be widely observed in Asia families. Incense sticks are often believed to be made from natural herbs and powders, and to have minimal impact on human health; however, there is limited research to support this claim. The current study aimed to identify the components of BI within the particulate matter 2.5 µm (PM2.5) range and explore if BI has bio-toxicity effects on rat astrocytes (CTX-TNA2). The study also examined the protective effects and underlying molecular mechanisms of tanshinone IIA, a primary lipid-soluble compound found in the herb danshen (Salvia miltiorrhiza Bunge), which has been shown to benefit the central nervous system. Results showed that despite the differences in BI components compared to the atmospheric particulate matter (PM) standards, BI still had a bio-toxicity on astrocytes. BI exposure caused early and late apoptosis, reactive oxygen species (ROS) production, MAPKs (JNK, p38, and ERK), and Akt signaling activation, and inflammation-related proteins (cPLA2, COX-2, HO-1, and MMP-9) increases. Our results further exhibit that the tanshinone IIA pre-treatment could significantly avoid the BI-induced apoptosis and inflammatory signals on rat astrocytes. These findings suggest that BI exposure may cause oxidative stress in rat astrocytes and increase inflammation-related proteins and support the potential of tanshinone IIA as a candidate for preventing BI-related adverse health effects.


Subject(s)
Abietanes , Astrocytes , Rats , Animals , Humans , Abietanes/pharmacology , Oxidative Stress , Inflammation/chemically induced
4.
Medicina (Kaunas) ; 59(4)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37109695

ABSTRACT

Background and Objectives: Attentional dysfunction has long been viewed as one of the fundamental underlying cognitive deficits in schizophrenia. There is an urgent need to understand its neural underpinning and develop effective treatments. In the process of attention, neural oscillation has a central role in filtering information and allocating resources to either stimulus-driven or goal-relevant objects. Here, we asked if resting-state EEG connectivity correlated with attentional performance in schizophrenia patients. Materials and Methods: Resting-state EEG recordings were obtained from 72 stabilized patients with schizophrenia. Lagged phase synchronization (LPS) was used to measure whole-brain source-based functional connectivity between 84 intra-cortical current sources determined by eLORETA (exact low-resolution brain electromagnetic tomography) for five frequencies. The Conners' Continuous Performance Test-II (CPT-II) was administered for evaluating attentional performance. Linear regression with a non-parametric permutation randomization procedure was used to examine the correlations between the whole-brain functional connectivity and the CPT-II measures. Results: Greater beta-band right hemispheric fusiform gyrus (FG)-lingual gyrus (LG) functional connectivity predicted higher CPT-II variability scores (r = 0.44, p < 0.05, corrected), accounting for 19.5% of variance in the CPT-II VAR score. Greater gamma-band right hemispheric functional connectivity between the cuneus (Cu) and transverse temporal gyrus (TTG) and between Cu and the superior temporal gyrus (STG) predicted higher CPT-II hit reaction time (HRT) scores (both r = 0.50, p < 0.05, corrected), accounting for 24.6% and 25.1% of variance in the CPT-II HRT score, respectively. Greater gamma-band right hemispheric Cu-TTG functional connectivity predicted higher CPT-II HRT standard error (HRTSE) scores (r = 0.54, p < 0.05, corrected), accounting for 28.7% of variance in the CPT-II HRTSE score. Conclusions: Our study indicated that increased right hemispheric resting-state EEG functional connectivity at high frequencies was correlated with poorer focused attention in schizophrenia patients. If replicated, novel approaches to modulate these networks may yield selective, potent interventions for improving attention deficits in schizophrenia.


Subject(s)
Cognition Disorders , Schizophrenia , Humans , Schizophrenia/complications , Electroencephalography/methods , Brain , Temporal Lobe , Magnetic Resonance Imaging
6.
Biomedicines ; 11(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36831167

ABSTRACT

EEG studies indicated that schizophrenia patients had increased resting-state theta-band functional connectivity, which was associated with negative symptoms. We recently published the first study showing that theta (6 Hz) transcranial alternating current stimulation (tACS) over left prefrontal and parietal cortices during a working memory task for accentuating frontoparietal theta-band synchronization (in-phase theta-tACS) reduced negative symptoms in schizophrenia patients. Here, we hypothesized that in-phase theta-tACS can modulate theta-band large-scale networks connectivity in schizophrenia patients. In this randomized, double-blind, sham-controlled trial, patients received twice-daily, 2 mA, 20-min sessions of in-phase theta-tACS for 5 consecutive weekdays (n = 18) or a sham stimulation (n = 18). Resting-state electroencephalography data were collected at baseline, end of stimulation, and at one-week follow-up. Exact low resolution electromagnetic tomography (eLORETA) was used to compute intra-cortical activity. Lagged phase synchronization (LPS) was used to measure whole-brain source-based functional connectivity across 84 cortical regions at theta frequency (5-7 Hz). EEG data from 35 patients were analyzed. We found that in-phase theta-tACS significantly reduced the LPS between the posterior cingulate (PC) and the parahippocampal gyrus (PHG) in the right hemisphere only at the end of stimulation relative to sham (p = 0.0009, corrected). The reduction in right hemispheric PC-PHG LPS was significantly correlated with negative symptom improvement at the end of the stimulation (r = 0.503, p = 0.039). Our findings suggest that in-phase theta-tACS can modulate theta-band large-scale functional connectivity pertaining to negative symptoms. Considering the failure of right hemispheric PC-PHG functional connectivity to predict improvement in negative symptoms at one-week follow-up, future studies should investigate whether it can serve as a surrogate of treatment response to theta-tACS.

7.
J Pers Med ; 12(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36294755

ABSTRACT

Schizophrenia is associated with increased resting-state large-scale functional network connectivity in the gamma frequency. High-frequency transcranial random noise stimulation (hf-tRNS) modulates gamma-band endogenous neural oscillations in healthy individuals through the application of low-amplitude electrical noises. Yet, it is unclear if hf-tRNS can modulate gamma-band functional connectivity in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast hf-tRNS (N = 17) and sham stimulation (N = 18) for treating negative symptoms in 35 schizophrenia patients. Short continuous currents without neuromodulatory effects were applied in the sham group to mimic real-stimulation sensations. We used electroencephalography to investigate if a five-day, twice-daily hf-tRNS protocol modulates gamma-band (33-45 Hz) functional network connectivity in schizophrenia. Exact low resolution electromagnetic tomography (eLORETA) was used to compute intra-cortical activity from regions within the default mode network (DMN) and fronto-parietal network (FPN), and functional connectivity was computed using lagged phase synchronization. We found that hf-tRNS reduced gamma-band within-DMN and within-FPN connectivity at the end of stimulation relative to sham stimulation. A trend was obtained between the change in within-FPN functional connectivity from baseline to the end of stimulation and the improvement of negative symptoms at the one-month follow-up (r = -0.49, p = 0.055). Together, our findings suggest that hf-tRNS has potential as a network-level approach to modulate large-scale functional network connectivity pertaining to negative symptoms of schizophrenia.

8.
J Pers Med ; 12(10)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36294806

ABSTRACT

Reduced left-lateralized electroencephalographic (EEG) frontal alpha asymmetry (FAA), a biomarker for the imbalance of interhemispheric frontal activity and motivational disturbances, represents a neuropathological attribute of negative symptoms of schizophrenia. Unidirectional high-frequency transcranial random noise stimulation (hf-tRNS) can increase the excitability of the cortex beneath the stimulating electrode. Yet, it is unclear if hf-tRNS can modulate electroencephalographic FAA in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast hf-tRNS and sham stimulation for treating negative symptoms in 35 schizophrenia patients. We used electroencephalography to investigate if 10 sessions of hf-tRNS delivered twice-a-day for five consecutive weekdays would modulate electroencephalographic FAA in schizophrenia. EEG data were collected and FAA was expressed as the differences between common-log-transformed absolute power values of frontal right and left hemisphere electrodes in the alpha frequency range (8-12.5 Hz). We found that hf-tRNS significantly increased FAA during the first session of stimulation (p = 0.009) and at the 1-week follow-up (p = 0.004) relative to sham stimulation. However, FAA failed to predict and surrogate the improvement in the severity of negative symptoms with hf-tRNS intervention. Together, our findings suggest that modulating electroencephalographic frontal alpha asymmetry by using unidirectional hf-tRNS may play a key role in reducing negative symptoms in patients with schizophrenia.

9.
J Hazard Mater ; 430: 128431, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35150991

ABSTRACT

Microplastics (MPs) pollution has become a serious environmental issue worldwide, but its potential effects on health remain unknown. The administration of polystyrene MPs (PS-MPs) to mice for eight weeks impaired learning and memory behavior. PS-MPs were detected in the brain especially in the hippocampus of these mice. Concurrently, the hippocampus had decreased levels of immediate-early genes, aberrantly enhanced synaptic glutamate AMPA receptors, and elevated neuroinflammation, all of which are critical for synaptic plasticity and memory. Interestingly, ablation of the vagus nerve, a modulator of the gut-brain axis, improved the memory function of PS-MPs mice. These results indicate that exposure to PS-MPs in mice alters the expression of neuronal activity-dependent genes and synaptic proteins, and increases neuroinflammation in the hippocampus, subsequently causing behavioral changes through the vagus nerve-dependent pathway. Our findings shed light on the adverse impacts of PS-MPs on the brain and hippocampal learning and memory.


Subject(s)
Microplastics , Polystyrenes , Animals , Glutamic Acid , Hippocampus , Mice , Plastics , Polystyrenes/toxicity
10.
Molecules ; 27(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35056691

ABSTRACT

Osteosarcoma, a primary bone tumor, responds poorly to chemotherapy and radiation therapy in children and young adults; hence, as the basis for an alternative treatment, this study investigated the cytotoxic and antiproliferative effects of naringenin on osteosarcoma cell lines, HOS and U2OS, by using cell counting kit-8 and colony formation assays. DNA fragmentation and the increase in the G2/M phase in HOS and U2OS cells upon treatment with various naringenin concentrations were determined by using the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay and Annexin V/propidium iodide double staining, respectively. Flow cytometry was performed, and 2',7'-dichlorodihydrofluorescein diacetate, JC-1, and Fluo-4 AM ester probes were examined for reactive oxygen species (ROS) generation, mitochondrial membrane potential, and intracellular calcium levels, respectively. Caspase activation, cell cycle, cytosolic and mitochondrial, and autophagy-related proteins were determined using western blotting. The results indicated that naringenin significantly inhibited viability and proliferation of osteosarcoma cells in a dose-dependent manner. In addition, naringenin induced cell cycle arrest in osteosarcoma cells by inhibiting cyclin B1 and cyclin-dependent kinase 1 expression and upregulating p21 expression. Furthermore, naringenin significantly inhibited the growth of osteosarcoma cells by increasing the intracellular ROS level. Naringenin induced endoplasmic reticulum (ER) stress-mediated apoptosis through the upregulation of ER stress markers, GRP78 and GRP94. Naringenin caused acidic vesicular organelle formation and increased autophagolysosomes, microtubule-associated protein-light chain 3-II protein levels, and autophagy. The findings suggest that the induction of cell apoptosis, cell cycle arrest, and autophagy by naringenin through mitochondrial dysfunction, ROS production, and ER stress signaling pathways contribute to the antiproliferative effect of naringenin on osteosarcoma cells.


Subject(s)
Reactive Oxygen Species
11.
J Pers Med ; 11(11)2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34834466

ABSTRACT

Negative symptoms represent an unmet need for schizophrenia treatment. The effect of theta frequency transcranial alternating current stimulation (theta-tACS) applied during working memory (WM) tasks on negative symptoms has not been demonstrated as of yet. We conducted a randomized, double-blind, sham-controlled trial of 36 stabilized schizophrenia patients, randomized to receive either twice daily, 6 Hz 2 mA, 20 min sessions of in-phase frontoparietal tACS or sham for five consecutive weekdays. Participants were concurrently engaged in WM tasks during stimulation. The primary outcome measure was the change over time in the Positive and Negative Syndrome Scale (PANSS) negative subscale score measured from baseline through to the 1-month follow-up. Secondary outcome measures were other symptom clusters, neurocognitive performance, and relevant outcomes. The intention-to-treat analysis demonstrated greater reductions in PANSS negative subscale scores at the end of stimulation in the active (-13.84%) than the sham (-3.78%) condition, with a large effect size (Cohen's d = 0.96, p = 0.006). The positive effect endured for at least one month. Theta-tACS also showed efficacies for cognitive symptoms, WM capacity, and psychosocial functions. Online theta-tACS offers a novel approach to modulate frontoparietal networks to treat negative symptoms of schizophrenia. The promising results require large-scale replication studies in patients with predominantly negative symptoms.

12.
Environ Health Perspect ; 129(5): 57003, 2021 05.
Article in English | MEDLINE | ID: mdl-33956507

ABSTRACT

BACKGROUND: Understanding the epidemic of chronic kidney disease of uncertain etiology may be critical for health policies and public health responses. Recent studies have shown that microplastics (MPs) contaminate our food chain and accumulate in the gut, liver, kidney, muscle, and so on. Humans manufacture many plastics-related products. Previous studies have indicated that particles of these products have several effects on the gut and liver. Polystyrene (PS)-MPs (PS-MPs) induce several responses, such as oxidative stress, and affect living organisms. OBJECTIVES: The aim of this study was to investigate the effects of PS-MPs in kidney cells in vitro and in vivo. METHODS: PS-MPs were evaluated in human kidney proximal tubular epithelial cells (HK-2 cells) and male C57BL/6 mice. Mitochondrial reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, inflammation, and autophagy were analyzed in kidney cells. In vivo, we evaluated biomarkers of kidney function, kidney ultrastructure, muscle mass, and grip strength, and urine protein levels, as well as the accumulation of PS-MPs in the kidney tissue. RESULTS: Uptake of PS-MPs at different concentrations by HK-2 cells resulted in higher levels of mitochondrial ROS and the mitochondrial protein Bad. Cells exposed to PS-MPs had higher ER stress and markers of inflammation. MitoTEMPO, which is a mitochondrial ROS antioxidant, mitigated the higher levels of mitochondrial ROS, Bad, ER stress, and specific autophagy-related proteins seen with PS-MP exposure. Furthermore, cells exposed to PS-MPs had higher protein levels of LC3 and Beclin 1. PS-MPs also had changes in phosphorylation of mitogen-activated protein kinase (MAPK) and protein kinase B (AKT)/mitogen-activated protein kinase (mTOR) signaling pathways. In an in vivo study, PS-MPs accumulated and the treated mice had more histopathological lesions in the kidneys and higher levels of ER stress, inflammatory markers, and autophagy-related proteins in the kidneys after PS-MPs treatment by oral gavage. CONCLUSIONS: The results suggest that PS-MPs caused mitochondrial dysfunction, ER stress, inflammation, and autophagy in kidney cells and accumulated in HK-2 cells and in the kidneys of mice. These results suggest that long-term PS-MPs exposure may be a risk factor for kidney health. https://doi.org/10.1289/EHP7612.


Subject(s)
Kidney , Microplastics , Polystyrenes , Animals , Epithelial Cells/drug effects , Humans , Kidney/cytology , Kidney/drug effects , Male , Mice , Mice, Inbred C57BL , Microplastics/toxicity , Polystyrenes/toxicity
13.
J Affect Disord ; 280(Pt A): 295-304, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33221715

ABSTRACT

BACKGROUND: Although add-on transcranial direct current stimulation (tDCS) is a promising intervention for treating unipolar (UD) and bipolar depression (BD), its moderate antidepressant efficacy urges research into biomarkers for predicting therapeutic response and achieving highly targeted applications. METHODS: This open-label trial enrolled UD (N=58) and BD (N=22) patients who had failed 1 or more trials of adequate pharmacologic interventions (ClinicalTrials.gov ID: NCT03287037). Bifrontal tDCS (anode/cathode: F3/F4) was applied using a 2 mA current for 20 min, twice daily, for 5 consecutive weekdays. Depression was measured with Hamilton Depression Rating Scale-17 (HAMD) at baseline, after 10-session stimulation, 1- and 4-week follow-ups. Heart rate (HR) and heart rate variability (HRV) was measured at baseline, during the initial 5 min of the 1st session, after 10-session stimulation, 1- and 4-week follow-ups. Cognitive performance and other outcomes were also assessed. RESULTS: Bifrontal tDCS rapidly and equally improved depression in both groups. The effects persisted until the end of the trial. Both groups had similar improvements in cognitive performance, anxiety, and psychosocial functioning. Compared with baseline, increased vagally-mediated HRV was observed one month after tDCS for both groups. A positive correlation was found between HR deceleration within the 1st session and treatment response after 10-session tDCS only among UD patients, explaining 20% of the variance. CONCLUSION: tDCS as an adjunct therapy is effective for both UD and BD. Data suggest that the greater the increase in parasympathetic signaling during the 1st session, the better the clinical response after 10-session tDCS for UD patients.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Transcranial Direct Current Stimulation , Bipolar Disorder/therapy , Double-Blind Method , Humans , Prefrontal Cortex , Treatment Outcome
14.
Neurobiol Dis ; 130: 104511, 2019 10.
Article in English | MEDLINE | ID: mdl-31212068

ABSTRACT

Although ß-amyloid plaques are a well-recognized hallmark of Alzheimer's disease (AD) neuropathology, no drugs reducing amyloid burden have shown efficacy in clinical trials, suggesting that once AD symptoms emerge, disease progression becomes independent of Aß production. Reactive astrocytes are another neuropathological feature of AD, where there is an emergence of neurotoxic (A1) reactive astrocytes. We find that serine racemase (SR), the neuronal enzyme that produces the N-methyl-d-aspartate receptor (NMDAR) co-agonist d-serine, is robustly expressed in A1-reactive neurotoxic astrocytes in the hippocampus and entorhinal cortex of AD subjects and an AD rat model. Furthermore, we observe intracellular signaling changes consistent with increased extra-synaptic NMDAR activation, excitotoxicity and decreased neuronal survival. Thus, reducing neurotoxic d-serine release from A1 inflammatory astrocytes could have therapeutic benefit for mild to advanced AD, when anti-amyloid strategies are ineffective.


Subject(s)
Alzheimer Disease/enzymology , Astrocytes/enzymology , Entorhinal Cortex/enzymology , Hippocampus/enzymology , Racemases and Epimerases/metabolism , Alzheimer Disease/pathology , Animals , Disease Models, Animal , Humans , Rats , Rats, Transgenic
15.
Transl Psychiatry ; 9(1): 132, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30967545

ABSTRACT

Schizophrenia is a severe and highly heritable disorder. Dystrobrevin-binding protein 1 (DTNBP1), also known as dysbindin-1, has been implicated in the pathophysiology of schizophrenia. Specifically, dysbindin-1 mRNA and protein expression are decreased in the brains of subjects with this disorder. Mice lacking dysbinidn-1 also display behavioral phenotypes similar to those observed in schizophrenic patients. However, it remains unknown whether deletion of dysbindin-1 impacts functions of the amygdala, a brain region that is critical for emotional processing, which is disrupted in patients with schizophrenia. Here, we show that dysbindin-1 is expressed in both excitatory and inhibitory neurons of the basolateral amygdala (BLA). Deletion of dysbindin-1 in male mice (Dys-/-) impaired cued and context-dependent threat memory, without changes in measures of anxiety. The behavioral deficits observed in Dys-/- mice were associated with perturbations in the BLA, including the enhancement of GABAergic inhibition of pyramidal neurons, increased numbers of parvalbumin interneurons, and morphological abnormalities of dendritic spines on pyramidal neurons. Our findings highlight an important role for dysbindin-1 in the regulation of amygdalar function and indicate that enhanced inhibition of BLA pyramidal neuron activity may contribute to the weakened threat memory expression observed in Dys-/- mice.


Subject(s)
Amygdala/metabolism , Dysbindin/genetics , Gene Deletion , Memory Consolidation , Schizophrenia/genetics , Amygdala/physiopathology , Animals , Behavior, Animal , Cues , Female , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pyramidal Cells/metabolism
16.
Health Educ Behav ; 45(5): 748-755, 2018 10.
Article in English | MEDLINE | ID: mdl-29631444

ABSTRACT

BACKGROUND: Active commuting to school (ACS) is associated with increased physical activity and lowered risk of obesity. In observational studies, ACS was associated with child self-efficacy, parent self-efficacy, and parent outcome expectations, although few experiments have assessed changes in these behavioral constructs. AIM: This study examined the effects of a bicycle train intervention (BTI) on child self-efficacy, parent self-efficacy, and parent outcome expectations in a diverse, low socioeconomic status population. METHOD: Data were from a 2014 BTI pilot randomized controlled trial (RCT) on fourth to fifth graders aged 9 to 12 years, n = 54, from four schools serving low-income populations in Seattle, Washington. The BTI was a group of children and study staff who cycled together to/from school daily, while controls received no intervention. Responses to validated child self-efficacy, parent self-efficacy, and parent outcome expectations questionnaires ranged from 1 to 3. Adjusted linear mixed effects models estimated standardized coefficients for child self-efficacy, parent self-efficacy, and parent outcome expectations comparing intervention and controls from Time 1 (preintervention) to Time 2 (final 4-6 weeks of intervention). RESULTS: The intervention group had increases in child self-efficacy of 0.84 standard deviations (95% confidence interval [CI] [0.37, 1.31]), parent self-efficacy of 0.46 standard deviations (95% CI [0.05, 0.86]), and parent outcome expectations of 0.47 standard deviations (95% CI [0.17, 0.76]) compared with controls from Times 1 to 2 (all ps <.05). CONCLUSION: A BTI improved child self-efficacy, parent self-efficacy, and parent outcome expectations, which warrants a larger RCT to examine long-term changes to these behavioral constructs and ACS.


Subject(s)
Bicycling , Schools , Self Efficacy , Transportation/methods , Child , Exercise , Female , Health Behavior , Humans , Male , Parents/psychology , Poverty , Randomized Controlled Trials as Topic , Surveys and Questionnaires , Washington
17.
Nat Neurosci ; 21(3): 373-383, 2018 03.
Article in English | MEDLINE | ID: mdl-29434375

ABSTRACT

Addiction is proposed to arise from alterations in synaptic strength via mechanisms of long-term potentiation (LTP) and depression (LTD). However, the causality between these synaptic processes and addictive behaviors is difficult to demonstrate. Here we report that LTP and LTD induction altered operant alcohol self-administration, a motivated drug-seeking behavior. We first induced LTP by pairing presynaptic glutamatergic stimulation with optogenetic postsynaptic depolarization in the dorsomedial striatum, a brain region known to control goal-directed behavior. Blockade of this LTP by NMDA-receptor inhibition unmasked an endocannabinoid-dependent LTD. In vivo application of the LTP-inducing protocol caused a long-lasting increase in alcohol-seeking behavior, while the LTD protocol decreased this behavior. We further identified that optogenetic LTP and LTD induction at cortical inputs onto striatal dopamine D1 receptor-expressing neurons controlled these behavioral changes. Our results demonstrate a causal link between synaptic plasticity and alcohol-seeking behavior and suggest that modulation of this plasticity may inspire a therapeutic strategy for addiction.


Subject(s)
Alcohol Drinking , Cerebral Cortex/physiology , Drug-Seeking Behavior/physiology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Neostriatum/physiology , Animals , Evoked Potentials/physiology , Glutamates/physiology , Male , Optogenetics , Rats , Rats, Long-Evans , Receptors, Dopamine D1/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Receptors, Presynaptic/physiology , Self Administration
18.
Addict Biol ; 23(2): 569-584, 2018 03.
Article in English | MEDLINE | ID: mdl-28436559

ABSTRACT

Dopamine signals mainly through D1 receptors (D1Rs) and D2 receptors (D2Rs); D1R-expressing or D2R-expressing neurons contribute to distinct reward and addictive behaviors. Traditionally, transgenic mice expressing green fluorescent protein (GFP) under D1R or D2R promoters are used for fluorescent verification in electrophysiology studies, whereas Cre mice are employed for behavioral research. However, it is unknown whether the same neuronal populations are targeted in GFP and Cre mice. Additionally, while D1Rs and D2Rs are known to be expressed in different striatal neurons, their expression patterns outside the striatum remain unclear. The present study addressed these two questions by using several transgenic mouse lines expressing fluorescent proteins (GFP or tdTomato) or Cre under the control of D1R or D2R promoters. We found a high degree of overlap between GFP-positive and Cre-positive neurons in the striatum and hippocampus. Additionally, we discovered that D1Rs and D2Rs were highly segregated in the orbitofrontal cortex, prefrontal cortex, dorsal and ventral hippocampus, and amygdala: ~4-34 percent of neurons co-expressed these receptors. Importantly, slice electrophysiological studies demonstrated that D1R-positive and D1R-negative hippocampal neurons were functionally distinct in a mouse line generated by crossing Drd1a-Cre mice with a Cre reporter Ai14 line. Lastly, we discovered that chronic alcohol intake differentially altered D1R-positive and D2R-positive neuron excitability in the ventral CA1. These data suggest that GFP and Cre mice target the same populations of striatal neurons, D1R-expressing or D2R-expressing neurons are highly segregated outside the striatum, and these neurons in the ventral hippocampal may exert distinct roles in alcohol addiction.


Subject(s)
Brain/metabolism , Dopaminergic Neurons/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Amygdala/cytology , Amygdala/metabolism , Animals , Brain/cytology , Corpus Striatum/cytology , Corpus Striatum/metabolism , Dopaminergic Neurons/cytology , Green Fluorescent Proteins/genetics , Hippocampus/cytology , Hippocampus/metabolism , Integrases/genetics , Luminescent Proteins/genetics , Mice , Mice, Transgenic , Models, Animal , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism
19.
Biol Psychiatry ; 83(3): 273-283, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29025687

ABSTRACT

BACKGROUND: The amygdala is a central component of the neural circuitry that underlies fear learning. N-methyl-D-aspartate receptor-dependent plasticity in the amygdala is required for pavlovian fear conditioning and extinction. N-methyl-D-aspartate receptor activation requires the binding of a coagonist, D-serine, which is synthesized from L-serine by the neuronal enzyme serine racemase (SR). However, little is known about SR and D-serine function in the amygdala. METHODS: We used immunohistochemical methods to characterize the cellular localization of SR and D-serine in the mouse and human amygdala. Using biochemical and molecular techniques, we determined whether trace fear conditioning and extinction engages the SR/D-serine system in the brain. D-serine was administered systemically to mice to evaluate its effect on fear extinction. Finally, we investigated whether the functional single nucleotide polymorphism rs4523957, which is an expression quantitative trait locus of the human serine racemase (SRR) gene, was associated with fear-related phenotypes in a highly traumatized human cohort. RESULTS: We demonstrate that approximately half of the neurons in the amygdala express SR, including both excitatory and inhibitory neurons. We find that the acquisition and extinction of fear memory engages the SR/D-serine system in the mouse amygdala and that D-serine administration facilitates fear extinction. We also demonstrate that the SRR single nucleotide polymorphism, rs4523957, is associated with posttraumatic stress disorder in humans, consistent with the facilitatory effect of D-serine on fear extinction. CONCLUSIONS: These new findings have important implications for understanding D-serine-mediated N-methyl-D-aspartate receptor plasticity in the amygdala and how this system could contribute to disorders with maladaptive fear circuitry.


Subject(s)
Amygdala/metabolism , Conditioning, Classical/physiology , Fear/physiology , Neurons/metabolism , Racemases and Epimerases/metabolism , Serine/metabolism , Stress Disorders, Post-Traumatic/metabolism , Adult , Animals , Extinction, Psychological/physiology , Genome-Wide Association Study , Humans , Immunohistochemistry , Male , Mice , Racemases and Epimerases/genetics , Stress Disorders, Post-Traumatic/genetics
20.
Sci Rep ; 7(1): 2501, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28566754

ABSTRACT

Excessive alcohol consumption is a known risk factor for stroke, but the effect of stroke on alcohol intake is unknown. The dorsomedial striatum (DMS) and midbrain areas of the nigrostriatal circuit are critically associated to stroke and alcohol addiction. Here we sought to explore the influence of stroke on alcohol consumption and to uncover the underlying nigrostriatal mechanism. Rats were trained to consume alcohol using a two-bottle choice or operant self-administration procedure. Retrograde beads were infused into the DMS or midbrain to label specific neuronal types, and ischemic stroke was induced in the dorsolateral striatum (DLS). Slice electrophysiology was employed to measure excitability and synaptic transmission in DMS and midbrain neurons. We found that ischemic stroke-induced DLS infarction produced significant increases in alcohol preference, operant self-administration, and relapse. These increases were accompanied by enhanced excitability of DMS and midbrain neurons. In addition, glutamatergic inputs onto DMS D1-neurons was potentiated, whereas GABAergic inputs onto DMS-projecting midbrain dopaminergic neurons was suppressed. Importantly, systemic inhibition of dopamine D1 receptors attenuated the stroke-induced increase in operant alcohol self-administration. Our results suggest that the stroke-induced DLS infarction evoked abnormal plasticity in nigrostriatal dopaminergic neurons and DMS D1-neurons, contributing to increased post-stroke alcohol-seeking and relapse.


Subject(s)
Alcohol Drinking/physiopathology , Alcoholism/physiopathology , Corpus Striatum/physiopathology , Stroke/physiopathology , Animals , Choice Behavior/physiology , Corpus Striatum/drug effects , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Humans , Male , Mediodorsal Thalamic Nucleus/metabolism , Mediodorsal Thalamic Nucleus/physiopathology , Mesencephalon/metabolism , Mesencephalon/physiopathology , Neuronal Plasticity/physiology , Rats , Receptors, Dopamine D1/drug effects , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Self Administration , Stroke/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...