Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Space Phys ; 127(3): e2021JA029992, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35865742

ABSTRACT

Low-latitude plasma blobs have been studied since their first being reported in 1986. However, investigations on temporal evolution of a blob or on continental scale (>2,000 km) ionospheric contexts around it are relatively rare. Overcoming these limitations can help elucidate the blob generation mechanisms. On 21 January 2021, the Ionospheric Connection Explorer satellite encountered a typical low-latitude blob near the northeastern coast of South America. The event was collocated with a local enhancement in 135.6 nm nightglow at the poleward edge of an equatorial plasma bubble (EPB), as observed by the Global-scale Observations of the Limb and Disk (GOLD) imager. Total electron content maps from the Global Navigation Satellite System confirm the GOLD observations. Unlike typical medium-scale traveling ionospheric disturbances (MSTIDs), the blob had neither well-organized wavefronts nor moved in the southwest direction. Neither was the blob a monotonically decaying equatorial ionization anomaly crest past sunset. Rather, the blob varied following latitudinal expansion/contraction of EPBs at similar magnetic longitudes. The observational results support that mechanisms other than MSTIDs, such as EPBs, can also contribute to blob generation.

2.
J Geophys Res Space Phys ; 125(9): e2020JA027942, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32999807

ABSTRACT

We present the first systematic analysis of global ionospheric disturbance current systems caused by multiple processes of solar and magnetospheric origin, including reorientations of the interplanetary magnetic field (IMF), sudden changes in the solar wind dynamic pressure, magnetospheric sawtooth substorms, and ultralow frequency (ULF) waves. Measurements from global magnetometer networks are used to derive the equivalent disturbance currents from the polar cap to the equator. A surprising result is that the equivalent disturbance current systems are very similar, although the driving processes are completely different. The equivalent disturbance current system in response to IMF reorientation or substorm onset is characterized by a large vortex on the dayside and evening sector and a smaller vortex near dawn, and the polarity of the current vortices depends on the IMF direction. The equivalent disturbance current system caused by a sudden change in the solar wind pressure or by ULF waves consists of a single vortex at middle and low latitudes and a very small vortex above ~60° magnetic latitude near dawn. The similar disturbance current systems caused by different solar wind and magnetospheric processes suggest that the global distribution of the ionospheric currents is determined by the intrinsic property of the ionosphere. The global current system takes only ~1 min to completely reconstruct, indicating that the current system can reach a new steady state within 1 min. A scenario is proposed to explain the global distribution and fast reconstruction of the current systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...