Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 25(1): 243, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879514

ABSTRACT

BACKGROUND: The endeavor of liberating patients from ventilator dependence within respiratory care centers (RCCs) poses considerable challenges. Multiple factors contribute to this process, yet establishing an effective regimen for pulmonary rehabilitation (PR) remains uncertain. This retrospective study aimed to evaluate existing rehabilitation protocols, ascertain associations between clinical factors and patient outcomes, and explore the influence of these protocols on the outcomes of the patients to shape suitable rehabilitation programs. METHODS: Conducted at a medical center in northern Taiwan, the retrospective study examined 320 newly admitted RCC patients between January 1, 2015, and December 31, 2017. Each patient received a tailored PR protocol, following which researchers evaluated weaning rates, RCC survival, and 3-month survival as outcome variables. Analyses scrutinized differences in baseline characteristics and prognoses among three PR protocols: protocol 1 (routine care), protocol 2 (routine care plus breathing training), and protocol 3 (routine care plus breathing and limb muscle training). RESULTS: Among the patients, 28.75% followed protocol 1, 59.37% protocol 2, and 11.88% protocol 3. Variances in age, body-mass index, pneumonia diagnosis, do-not-resuscitate orders, Glasgow Coma Scale scores (≤ 14), and Acute Physiology and Chronic Health Evaluation II (APACHE) scores were notable across these protocols. Age, APACHE scores, and abnormal blood urea nitrogen levels (> 20 mg/dL) significantly correlated with outcomes-such as weaning, RCC survival, and 3-month survival. Elevated mean hemoglobin levels linked to increased weaning rates (p = 0.0065) and 3-month survival (p = 0.0102). Four adjusted models clarified the impact of rehabilitation protocols. Notably, the PR protocol 3 group exhibited significantly higher 3-month survival rates compared to protocol 1, with odds ratios (ORs) ranging from 3.87 to 3.97 across models. This association persisted when comparing with protocol 2, with ORs between 3.92 and 4.22. CONCLUSION: Our study showed that distinct PR protocols significantly affected the outcomes of ventilator-dependent patients within RCCs. The study underlines the importance of tailored rehabilitation programs and identifies key clinical factors influencing patient outcomes. Recommendations advocate prospective studies with larger cohorts to comprehensively assess PR effects on RCC patients.


Subject(s)
Respiration, Artificial , Ventilator Weaning , Humans , Retrospective Studies , Male , Female , Ventilator Weaning/methods , Aged , Middle Aged , Treatment Outcome , Respiration, Artificial/methods , Taiwan/epidemiology , Cohort Studies , Clinical Protocols , Aged, 80 and over
2.
J Agric Food Chem ; 70(13): 3989-3999, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35321548

ABSTRACT

Alpinia hainanensis is an important food spice and ethnic medicine in Southwest China. In this study, we found that the EtOAc-soluble fraction (AHE) of the A. hainanensis rhizome ethanol extract could ameliorate dextran sulfate sodium-induced ulcerative colitis (UC). To explore active constituents, five pairs of previously unreported enantiomers (1-5), together with nine known ones (6-14), were obtained. Structural characterization was achieved by comprehensive spectroscopic methods. Compounds 1 and 2 were new curcumin-butyrovanillone hybrids featuring a rare structural fragment of 2,3-dihyrofuran. The anti-inflammatory activities of isolates were evaluated, and the results indicated that compounds (-)-1, (-)-3, 6, 9, 11, and 12 significantly inhibited the nuclear factor-κB signaling pathway. These findings indicate the major active fraction of the A. hainanensis rhizome ethanol extract enriched with diarylheptanoids, flavonoids, phenolics, and their hybrid mixtures, which could be developed as a nutritional and dietary supplement for treating UC.


Subject(s)
Alpinia , Colitis, Ulcerative , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Dextran Sulfate/adverse effects , Disease Models, Animal , Humans , NF-kappa B/metabolism , Plant Extracts/chemistry , Rhizome
3.
Article in English | MEDLINE | ID: mdl-27200105

ABSTRACT

We investigated the syndromes of the Sini decoction pattern (SDP), a common ZHENG in traditional Chinese medicine (TCM). The syndromes of SDP were correlated with various severe Yang deficiency related symptoms. To obtain a common profile for SDP, we distributed questionnaires to 300 senior clinical TCM practitioners. According to the survey, we concluded 2 sets of symptoms for SDP: (1) pulse feels deep or faint and (2) reversal cold of the extremities. Twenty-four individuals from Taipei City Hospital, Linsen Chinese Medicine Branch, Taiwan, were recruited. We extracted the total mRNA of peripheral blood mononuclear cells from the 24 individuals for microarray experiments. Twelve individuals (including 6 SDP patients and 6 non-SDP individuals) were used as the training set to identify biomarkers for distinguishing the SDP and non-SDP groups. The remaining 12 individuals were used as the test set. The test results indicated that the gene expression profiles of the identified biomarkers could effectively distinguish the 2 groups by adopting a hierarchical clustering algorithm. Our results suggest the feasibility of using the identified biomarkers in facilitating the diagnosis of TCM ZHENGs. Furthermore, the gene expression profiles of biomarker genes could provide a molecular explanation corresponding to the ZHENG of TCM.

4.
PLoS One ; 9(11): e113424, 2014.
Article in English | MEDLINE | ID: mdl-25409520

ABSTRACT

Following an increase in the use of electric appliances that can generate 50 or 60 Hz electromagnetic fields, concerns have intensified regarding the biological effects of extremely low-frequency electromagnetic fields (ELF-EMFs) on human health. Previous epidemiological studies have suggested the carcinogenic potential of environmental exposure to ELF-EMFs, specifically at 50 or 60 Hz. However, the biological mechanism facilitating the effects of ELF-EMFs remains unclear. Cellular studies have yielded inconsistent results regarding the biological effects of ELF-EMFs. The inconsistent results might have been due to diverse cell types. In our previous study, we indicated that 1.5 mT, 60 Hz ELF-EMFs will cause G1 arrest through the activation of the ATM-Chk2-p21 pathway in human keratinocyte HaCaT cells. The aim of the current study was to investigate whether ELF-EMFs cause similar effects in a distinct epidermal keratinocyte, primary normal human epidermal keratinocytes (NHEK), by using the same ELF-EMF exposure system and experimental design. We observed that ELF-EMFs exerted no effects on cell growth, cell proliferation, cell cycle distribution, and the activation of ATM signaling pathway in NHEK cells. We demonstrated that the 2 epidermal keratinocytes responded to ELF-EMFs differently. To further validate this finding, we simultaneously exposed the NHEK and HaCaT cells to ELF-EMFs in the same incubator for 168 h and observed the cell growths. The simultaneous exposure of the two cell types results showed that the NHEK and HaCaT cells exhibited distinct responses to ELF-EMFs. Thus, we confirmed that the biological effects of ELF-EMFs in epidermal keratinocytes are cell type specific. Our findings may partially explain the inconsistent results of previous studies when comparing results across various experimental models.


Subject(s)
Electromagnetic Fields , Keratinocytes/radiation effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Proliferation/radiation effects , Cells, Cultured , Checkpoint Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epidermal Cells , G1 Phase Cell Cycle Checkpoints/radiation effects , Humans , Hydrogen Peroxide/toxicity , Keratinocytes/cytology , Keratinocytes/metabolism , Phosphorylation/drug effects , Signal Transduction/radiation effects , Ultraviolet Rays
5.
PLoS One ; 9(8): e104732, 2014.
Article in English | MEDLINE | ID: mdl-25111195

ABSTRACT

In daily life, humans are exposed to the extremely low-frequency electromagnetic fields (ELF-EMFs) generated by electric appliances, and public concern is increasing regarding the biological effects of such exposure. Numerous studies have yielded inconsistent results regarding the biological effects of ELF-EMF exposure. Here we show that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, inhibiting cell proliferation. To present well-founded results, we comprehensively evaluated the biological effects of ELF-EMFs at the transcriptional, protein, and cellular levels. Human HaCaT cells from an immortalized epidermal keratinocyte cell line were exposed to a 1.5 mT, 60 Hz ELF-EMF for 144 h. The ELF-EMF could cause G1 arrest and decrease colony formation. Protein expression experiments revealed that ELF-EMFs induced the activation of the ATM/Chk2 signaling cascades. In addition, the p21 protein, a regulator of cell cycle progression at G1 and G2/M, exhibited a higher level of expression in exposed HaCaT cells compared with the expression of sham-exposed cells. The ELF-EMF-induced G1 arrest was diminished when the CHK2 gene expression (which encodes checkpoint kinase 2; Chk2) was suppressed by specific small interfering RNA (siRNA). These findings indicate that ELF-EMFs activate the ATM-Chk2-p21 pathway in HaCaT cells, resulting in cell cycle arrest at the G1 phase. Based on the precise control of the ELF-EMF exposure and rigorous sham-exposure experiments, all transcriptional, protein, and cellular level experiments consistently supported the conclusion. This is the first study to confirm that a specific pathway is triggered by ELF-EMF exposure.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 2/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Electromagnetic Fields/adverse effects , G1 Phase Cell Cycle Checkpoints/radiation effects , Signal Transduction/radiation effects , Cell Line , Cell Proliferation/radiation effects , Humans , Transcriptome/radiation effects
6.
PLoS One ; 8(9): e73311, 2013.
Article in English | MEDLINE | ID: mdl-24019915

ABSTRACT

Simian virus 40 (SV40) transforms cells through the suppression of tumor-suppressive responses by large T and small t antigens; studies on the effects of these two oncoproteins have greatly improved our knowledge of tumorigenesis. Large T antigen promotes cellular transformation by binding and inactivating p53 and pRb tumor suppressor proteins. Previous studies have shown that not all of the tumor-suppressive responses were inactivated in SV40-transformed cells; however, the underlying cause is not fully studied. In this study, we investigated the UVB-responsive transcriptome of an SV40-transformed fibroblast (MRC5CVI) and that of its untransformed counterpart (MRC-5). We found that, in response to UVB irradiation, MRC-5 and MRC5CVI commonly up-regulated the expression of oxidative phosphorylation genes. MRC-5 up-regulated the expressions of chromosome condensation, DNA repair, cell cycle arrest, and apoptotic genes, but MRC5CVI did not. Further cell death assays indicated that MRC5CVI was more sensitive than MRC-5 to UVB-induced cell death with increased caspase-3 activation; combining with the transcriptomic results suggested that MRC5CVI may undergo UVB-induced cell death through mechanisms other than transcriptional regulation. Our study provides a further understanding of the effects of SV40 transformation on cellular stress responses, and emphasizes the value of SV40-transformed cells in the researches of sensitizing neoplastic cells to radiations.


Subject(s)
Gene Expression Profiling , Transcriptome , Ultraviolet Rays , Apoptosis , Cell Cycle , Cell Line, Transformed , DNA Repair , Fibroblasts/radiation effects , Humans
7.
PLoS One ; 7(7): e40824, 2012.
Article in English | MEDLINE | ID: mdl-22829888

ABSTRACT

Cordyceps sinensis (CS) has been commonly used as herbal medicine and a health supplement in China for over two thousand years. Although previous studies have demonstrated that CS has benefits in immunoregulation and anti-inflammation, the precise mechanism by which CS affects immunomodulation is still unclear. In this study, we exploited duplicate sets of loop-design microarray experiments to examine two different batches of CS and analyze the effects of CS on dendritic cells (DCs), in different physiology stages: naïve stage and inflammatory stage. Immature DCs were treated with CS, lipopolysaccharide (LPS), or LPS plus CS (LPS/CS) for two days, and the gene expression profiles were examined using cDNA microarrays. The results of two loop-design microarray experiments showed good intersection rates. The expression level of common genes found in both loop-design microarray experiments was consistent, and the correlation coefficients (Rs), were higher than 0.96. Through intersection analysis of microarray results, we identified 295 intersecting significantly differentially expressed (SDE) genes of the three different treatments (CS, LPS, and LPS/CS), which participated mainly in the adjustment of immune response and the regulation of cell proliferation and death. Genes regulated uniquely by CS treatment were significantly involved in the regulation of focal adhesion pathway, ECM-receptor interaction pathway, and hematopoietic cell lineage pathway. Unique LPS regulated genes were significantly involved in the regulation of Toll-like receptor signaling pathway, systemic lupus erythematosus pathway, and complement and coagulation cascades pathway. Unique LPS/CS regulated genes were significantly involved in the regulation of oxidative phosphorylation pathway. These results could provide useful information in further study of the pharmacological mechanisms of CS. This study also demonstrates that with a rigorous experimental design, the biological effects of a complex compound can be reliably studied by a complex system like cDNA microarray.


Subject(s)
Cordyceps/chemistry , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Drugs, Chinese Herbal/pharmacology , Gene Expression Profiling/methods , Cells, Cultured , Humans , Lipopolysaccharides/pharmacology , Oligonucleotide Array Sequence Analysis
8.
Int J Mol Sci ; 11(10): 3760-8, 2010 Sep 29.
Article in English | MEDLINE | ID: mdl-21152299

ABSTRACT

Aflatoxin B(1) (AFB(1)) and deoxynivalenol (DON) are important food-borne mycotoxins that have been implicated in animal and human health. In this study, individual and combinative effects of AFB(1) and DON were tested in primary hepatocytes of Cyprinus carpio. The results indicated that the combinative effects of AFB(1) and DON (0.01 µg/mL AFB(1) and 0.25 µg/mL DON; 0.02 µg/mL AFB(1) and 0.25 µg/mL DON; 0.02 µg/mL AFB(1) and 0.5 µg/mL DON) were higher than that of individual mycotoxin (P < 0.05). The activity of AST, ALT and LDH in cell supernatant was higher than that of control group (P < 0.05) when the mycotoxins were exposed to primary hepatocytes for 4 h. The decreased cell number was observed in tested group by inverted light microscopy. The mitochondrial swelling, endoplasmic reticulum dilation and a lot of lipid droplets were observed in primary hepatocytes by transmission electron microscope. Therefore, this combination was classified as an additive response of the two mycotoxins.


Subject(s)
Aflatoxin B1/pharmacology , Hepatocytes/drug effects , Mycotoxins/pharmacology , Trichothecenes/pharmacology , Animals , Carps , Cells, Cultured , Hepatocytes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...