Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 28(42): 425201, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27541350

ABSTRACT

We derive an Ising Hamiltonian for kinetic simulations involving interstitial and vacancy defects in binary alloys. Our model, which we term 'ABVI', incorporates solute transport by both interstitial defects and vacancies into a mathematically-consistent framework, and thus represents a generalization to the widely-used ABV model for alloy evolution simulations. The Hamiltonian captures the three possible interstitial configurations in a binary alloy: A-A, A-B, and B-B, which makes it particularly useful for irradiation damage simulations. All the constants of the Hamiltonian are expressed in terms of bond energies that can be computed using first-principles calculations. We implement our ABVI model in kinetic Monte Carlo simulations and perform a verification exercise by comparing our results to published irradiation damage simulations in simple binary systems with Frenkel pair defect production and several microstructural scenarios, with matching agreement found.

2.
Langmuir ; 27(19): 11930-42, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-21859109

ABSTRACT

We study the indentation of a free-standing lipid membrane suspended over a nanopore on a hydrophobic substrate by means of molecular dynamics simulations. We find that in the course of indentation the membrane bends at the point of contact and the fringes of the membrane glide downward intermittently along the pore edges and stop gliding when the fringes reach the edge bottoms. The bending continues afterward, and the large strain eventually induces a phase transition in the membrane, transformed from a bilayered structure to an interdigitated structure. The membrane is finally ruptured when the indentation goes deep enough. Several local physical quantities in the pore regions are calculated, which include the tilt angle of lipid molecules, the nematic order, the included angle, and the distance between neighboring lipids. The variations of these quantities reveal many detailed, not-yet-specified local structural transitions of lipid molecules under indentation. The force-indentation curve is also studied and discussed. The results make a connection between the microscopic structure and the macroscopic properties and provide deep insight into the understanding of the stability of a lipid membrane spanning over nanopore.


Subject(s)
Membranes, Artificial , Molecular Dynamics Simulation , Nanopores , Hydrophobic and Hydrophilic Interactions
3.
J Biomech Eng ; 125(3): 315-22, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12929235

ABSTRACT

A finite element technique was developed to investigate the thermal behavior of bone cement in joint replacement procedures. Thermal tests were designed and performed to provide the parameters in a kinetic model of bone cement exothermic polymerization. The kinetic model was then coupled with an energy balance equation using a finite element formulation to predict the temperature history and polymerization development in the bone-cement-prosthesis system. Based on the temperature history, the possibility of the thermal bone necrosis was then evaluated. As a demonstration, the effect of cement mantle thickness on the thermal behavior of the system was investigated. The temperature profiles in the bone-cement-prosthesis system have shown that the thicker the cement, the higher the peak temperature in the bone. In the 7 mm thick cement case, a peak temperature of over 55 degrees C was predicted. These high temperatures occurred in a small region near the bone/cement interface. No damage was predicted in the 3 mm and 5 mm cement mantle thickness cases. Although thermal damage was predicted in the bone for the 7 mm mantle thickness case, the amount of thermal necrosis predicted was minimal. If more cement is used in the surgical procedure, more heat will be generated and the potential for thermal bone damage may rise. The systems should be carefully selected to reduce thermal tissue damage when more cement is used. The methodology developed in this paper provides a numerical tool for the quantitative simulation of the thermal behavior of bone-cement-prosthesis designs.


Subject(s)
Bone Cements/chemistry , Bone and Bones/physiopathology , Cementation/methods , Hot Temperature , Materials Testing/methods , Models, Biological , Models, Chemical , Osteonecrosis/physiopathology , Animals , Arthroplasty/adverse effects , Arthroplasty/methods , Bone Cements/adverse effects , Bone and Bones/chemistry , Burns/etiology , Burns/physiopathology , Cementation/adverse effects , Energy Transfer , Equipment Failure Analysis/methods , Finite Element Analysis , Humans , Joint Prosthesis/adverse effects , Osteonecrosis/etiology , Temperature , Thermal Conductivity
SELECTION OF CITATIONS
SEARCH DETAIL
...