Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 19(12): 1697-1706, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33215628

ABSTRACT

Oxygen vacancies (OVs) defects in metal oxide-based photocatalysts play a crucial role in improving the charge carrier separation efficiencies to enhance the photocatalytic performances. In this work, OVs were introduced in 3D Bi2MoO6 microspheres through a facile and fast microwave-assisted method via the modulation of tetramethylethylenediamine (TMEDA). EPR, Raman and XPS results demonstrated that large amounts of oxygen vacancies were formed on the surface of BMO microspheres. The photocatalytic properties of the samples were studied by degradation of tetracycline (TC) under visible light. The optimal Bi2MoO6 with OVs exhibited optimum photocatalytic activity, and the degradation rate was 7.0 times higher than that of pristine Bi2MoO6. This enhancement can be attributed to the 3D structure furnishing more surface active sites and suitable OVs defects favoring the electron-hole separation. Moreover, the defective Bi2MoO6 microspheres exhibit high stability because the photocatalytic activity remains almost unchanged after 5 cycles, making them favorable for practical applications. Finally, a possible visible light photocatalysis mechanism for the degradation of TC was tentatively proposed.

2.
ACS Omega ; 4(5): 9467-9472, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31460037

ABSTRACT

This study investigates the degradation of dimethyl phthalate (DMP) with hydrogen peroxide and ferrate (Fe(VI)) under various reaction conditions. The results showed that the optimum conditions for dimethyl phthalate removal from water were as follows: (a) pH 7.0 and (b) the original molar ratio of [Fe(VI)]/[H2O2]/[DMP] equal to 10:2:1. Under the optimum conditions, the degradation rate of DMP can reach 89.7% in 360 min. Furthermore, 2,5-dihydroxybenzaldehyde, isophthalic acid, 2-ethylhexanol, oxalic acid, 2,6-dihydroxybenzoic acid, 2,6-dihydroxybenzaldehyde, 2,5-dihydroxybenzoic acid, and monomethyl phthalate were identified as the degradation intermediates, and degradation pathways were proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...