Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(4)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38667153

ABSTRACT

Harmful algal blooms (HABs) pose a global threat to the biodiversity and stability of local aquatic ecosystems. Rapid and accurate classification of microalgae and cyanobacteria in water is increasingly desired for monitoring complex water environments. In this paper, we propose a pulse feature-enhanced classification (PFEC) method as a potential solution. Equipped with a rapid measurement prototype that simultaneously detects polarized light scattering and fluorescence signals of individual particles, PFEC allows for the extraction of 38 pulse features to improve the classification accuracy of microalgae, cyanobacteria, and other suspended particulate matter (SPM) to 89.03%. Compared with microscopic observation, PFEC reveals three phyla proportions in aquaculture samples with an average error of less than 14%. In this paper, PFEC is found to be more accurate than the pulse-average classification method, which is interpreted as pulse features carrying more detailed information about particles. The high consistency of the dominant and common species between PFEC and microscopy in all field samples also demonstrates the flexibility and robustness of the former. Moreover, the high Pearson correlation coefficient accounting for 0.958 between the cyanobacterial proportion obtained by PFEC and the cyanobacterial density given by microscopy implies that PFEC serves as a promising early warning tool for cyanobacterial blooms. The results of this work suggest that PFEC holds great potential for the rapid and accurate classification of microalgae and cyanobacteria in aquatic environment monitoring.


Subject(s)
Cyanobacteria , Microalgae , Fluorescence , Light , Harmful Algal Bloom , Environmental Monitoring/methods
2.
Int J Nanomedicine ; 18: 3913-3935, 2023.
Article in English | MEDLINE | ID: mdl-37489141

ABSTRACT

Anesthetics, which include both local and general varieties, are a unique class of drugs widely utilized in clinical surgery to alleviate pain and promote relaxation in patients. Although numerous anesthetics and their traditional formulations are available in the market, only a select few exhibit excellent anesthetic properties that meet clinical requirements. The main challenges are the potential toxic and adverse effects of anesthetics, as well as the presence of the blood-brain barrier (BBB), which makes it difficult for most general anesthetics to effectively penetrate to the brain. Loading anesthetics onto nanocarriers as anesthetic nanomedicines might address these challenges and improve anesthesia effectiveness, reduce toxic and adverse effects, while significantly enhance the efficiency of general anesthetics passing through the BBB. Consequently, anesthetic nanomedicines play a crucial role in the field of anesthesia. Despite their significance, research on anesthetic nanomedicines is still in its infancy, especially when compared to other types of nanomedicines in terms of depth and breadth. Although local anesthetic nanomedicines have received considerable attention and essentially meet clinical needs, there are few reported instances of nanomedicines for general anesthetics. Given the extensive usage of anesthetics and the many of them need for improved performance, emerging anesthetic nanomedicines face both unparalleled opportunities and considerable challenges in terms of theory and technology. Thus, a comprehensive summary with systematic analyses of anesthetic nanomedicines is urgently required. This review provides a comprehensive summary of the classification, properties, and research status of anesthetic nanomedicines, along with an exploration of their opportunities and challenges. In addition, future research directions and development prospects are discussed. It is hoped that researchers from diverse disciplines will collaborate to study anesthetic nanomedicines and develop them as a valuable anesthetic dosage form for clinical surgery.


Subject(s)
Anesthesia , Anesthetics, General , Drug-Related Side Effects and Adverse Reactions , Humans , Nanomedicine , Anesthetics, Local , Brain
SELECTION OF CITATIONS
SEARCH DETAIL
...