Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 15(33): 40100-40114, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37572056

ABSTRACT

Transition-metal selenides have captured significant research attention as anode materials for sodium ion batteries (SIBs) due to their high theoretical specific capacities and excellent electronic conductivity. However, volumetric expansion and inferior cycle life still hinder their practical application. Herein, a three-dimensional (3D) ordered macroporous bimetallic (Mn,Fe) selenide modified by a carbon layer (denoted as 3DOM-MnFeSex@C) composite containing a heterojunction interface is fabricated through selenizing a 3D ordered macroporous Mn-based Prussian Blue analogue single crystal. The 3DOM-MnFeSex@C exhibits hierarchically porous architecture with enhanced mass-transfer efficiency; MnSe and FeSe2 particles are encapsulated into macroporous carbon framework, which can significantly promote the electronic conductivity and maintain the structural integrity. The density functional theory calculation indicates that the heterojunction interface between MnSe and FeSe2 has been successfully engineered so that Na+ can be readily adsorbed and rapidly converted, thus promoting the reaction kinetics and extending the cyclic life. As expected, the 3DOM-MnFeSex@C composite delivers excellent rate performance (277.6 mA h g-1 at 10 A g-1), and prolonged cycling life (191.6 mA h g-1 even after 1000 cycles at 2 A g-1) as a sodium storage anode. The sodium storage mechanism of the composite was further investigated by in situ X-ray diffraction and ex situ high-resolution transmission electron microscopy characterization techniques.

2.
Nat Commun ; 14(1): 5046, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37598238

ABSTRACT

3D orthogonal woven composites are receiving increasing attention with the ever-growing market of composites. A current challenge for these materials' development is how to improve their damage tolerance in orthogonal and layer-to-layer structures under extreme loads. In this paper, a damage reduction strategy is proposed by combining structural and electromagnetic properties. An integrated experimental platform is designed combining a power system, a drop-testing machine, and data acquisition devices to investigate the effects of pulse current and impact force on woven composites. Experimental results demonstrate that pulse current can effectively reduce delamination damage and residual deformation. A multi-field coupled damage model is developed to analyze the evolutions of temperature, current and damage. Parallel current-carrying carbon fibers that cause yarns to be transversely compressed enhance the mechanical properties. Moreover, the microcrack formation and extrusion deformation in yarns cause the redistribution of local current among carbon fibers, and its interaction with the self-field produces an obvious anti-impact effect. The obtained results reveal the mechanism of damage reduction and provide a potential approach for improving damage tolerance of these composites.

3.
Small ; 19(38): e2302403, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37211706

ABSTRACT

The highest specific energy absorption (SEA) of interlocked micron-thickness carbon nanotube (IMCNT) films subjected to micro-ballistic impact is reported in this paper. The SEA of the IMCNT films ranges from 0.8 to 1.6 MJ kg-1 , the greatest value for micron-thickness films to date. The multiple deformation-induced dissipation channels at the nanoscale involving disorder-to-order transition, frictional sliding, and entanglement of CNT fibrils contribute to the ultra-high SEA of the IMCNT. Furthermore, an anomalous thickness dependency of the SEA is observed, that is, the SEA increases with increasing thickness, which should be ascribed to the exponential growth in nano-interface that further boosts the energy dissipation efficiency as the film thickness increases. The results indicate that the developed IMCNT overcomes the size-dependent impact resistance of traditional materials and demonstrates great potential as a bulletproof material for high-performance flexible armor.

4.
ACS Appl Mater Interfaces ; 15(10): 13449-13459, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36749935

ABSTRACT

Establishing scaling laws for amorphous alloys is of critical importance for describing their mechanical behavior at different size scales. In this paper, taking Ni2Ta amorphous metallic alloy as a prototype materials system, we derive the scaling law of impact resistance for amorphous alloys. We use laser-induced supersonic micro-ballistic impact experiments to measure for the first time the size-dependent impact response of amorphous alloys. We also report the results of molecular dynamics (MD) simulations for the same system but at much smaller scales. Comparing these results, we determined a law for scaling both length and time scales based on dimensional analysis. It connects the time and length scales of the experimental results on the impact resistance of amorphous alloys to that of the MD simulations, providing a method for bridging the gap in comparing the dynamic behavior of amorphous alloys at various scales and a guideline for the fabrication of new amorphous alloy materials with extraordinary impact resistance.

5.
Sci Rep ; 12(1): 21435, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36509854

ABSTRACT

Effect of highly-porous and lightweight carbon nanotube sponges on the high-power continuous wave laser ablation resistance of the sandwich panel was investigated experimentally. As a comparison, thermal responses of monolithic plate, carbon nanotube film filled sandwich panel, unfilled sandwich panel and carbon nanotube sponge filled sandwich panel subjected to continuous wave laser irradiation were analyzed. Experimental results showed that the laser resistance of the carbon nanotube filled sandwich panel is obviously higher than the unfilled structure. The added failure time of the sandwich panel by filling the cores with the carbon nanotube sponge of unit mass was about 18 times and 33 times longer than that by filling with the conventional ablative and insulated material. It could be understood by the high thermal diffusion coefficient and latent heat of sublimation of the carbon nanotube sponge. During ablation by the continuous wave, the carbon nanotube sponge not only fast consumed the absorbed laser energy through phase change of a large-area material due to its high latent heat of sublimation, but also quickly dispersed the heat energy introduced by the continuous wave laser due to its high thermal diffusion coefficient, leading to the extraordinary laser ablation resistance.

6.
Nano Lett ; 22(23): 9290-9296, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36404639

ABSTRACT

Silica aerogels have incomparable advantages among thermal insulation materials because of their ultralow density and thermal conductivity, but cumbersome production processes, high cost, and low mechanical stability limit their practical application. In this study, a novel aqueous process to prepare lightweight aerogel-like silica foams (ASFoams) through the cast-in situ method and ambient pressure drying was proposed with multiblock polyurethane surfactant as the vesicle template. ASFoams possess a unique loose stacking morphology of the silica hollow sphere with a 3D network structure as the skeleton, which endues ASFoams with a low density of 0.059 g/cm3, low thermal conductivity of 36.1 mW·k-1·m-1, and pretty good mechanical properties. These properties make ASFoams a promising option for thermal insulation in industrial, aerospace, and other extreme environmental conditions. In addition, the micromorphology of ASFoams can be adjusted by changing the reaction conditions, which may provide a facile method for the preparation of a silica aerogel-like foam with adjustable microstructure.


Subject(s)
Silicon Dioxide , Skeleton , Thermal Conductivity , Surface-Active Agents , Polyurethanes
7.
Appl Opt ; 61(19): 5728-5733, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-36255805

ABSTRACT

The ultimate capability of light-electricity conversion of a laser with different operation modes in a typical photovoltaic (PV) cell was investigated for the technologic concept of laser power transmission (LPT). The quasi-linear correlation between the maximum allowable laser power density and the pulsed laser power percentage (PPP) of the combined dual lasers was found experimentally on a tri-junction GaAs PV cell. At the same time, the patterns of thermomechanical damage in the PV cells were characterized. The physical mechanism on the difference in the light-electricity conversion ability for a multi-pulse (MP) laser and a continuous wave (CW) laser was revealed by the coupled model on thermal diffusion and the carrier transport.

8.
Small ; 18(47): e2205062, 2022 11.
Article in English | MEDLINE | ID: mdl-36251781

ABSTRACT

Timely restoration of blood supply after myocardial ischemia is imperative for the treatment of acute myocardial infarction but causes additional myocardial ischemia/reperfusion (MI/R) injury, which has not been hitherto effectively targeted by interventions for MI/R injury. Hence, the development of advanced nanomedicine that can reduce apoptosis of cardiomyocytes while protecting against MI/R in vivo is of utmost importance. Herein, a redox-responsive and emissive TPE-ss covalent organic framework (COF) nanocarrier by integrating aggregation-induced emission luminogens and redox-responsive disulfide motifs into the COF skeleton is developed. TPE-ss COF allows for efficient loading and delivery of matrine, a renowned anti-cryptosporidial drug, which significantly reduces MI/R-induced functional deterioration and cardiomyocyte injury when injected through the tail vein into MI/R models at 5 min after 30 min of ischemia. Moreover, TPE-ss COF@Matrine shows a drastic reduction in cardiomyocyte apoptosis and improvements in cardiac function and survival rate. The effect of the TPE-ss COF carrier is further elucidated by enhanced cardiomyocyte viability and triphenyltetrazolium chloride staining in vitro. This work demonstrates the cardioprotective effect of TPE-ss COFs for MI/R injury, which unleashes the immense potential of using COFs as smart drug carriers for the peri-reperfusion treatment of ischemic heart disease with low cost, high stability, and single postoperative intervention.


Subject(s)
Metal-Organic Frameworks , Myocardial Reperfusion Injury , Humans , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/metabolism , Metal-Organic Frameworks/pharmacology , Myocytes, Cardiac , Apoptosis , Oxidation-Reduction
9.
Ecotoxicol Environ Saf ; 234: 113329, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35255253

ABSTRACT

Copper is a trace element necessary for the normal functioning of organisms, but excessive copper contents may be toxic to the heart. The goal of this study was to investigate the role of excessive copper accumulation in mitochondrial damage and cell apoptosis inhibition. In vivo, the heart copper concentration and cardiac troponin I (c-TnI) and N-terminal forebrain natriuretic peptide (NT-pro-BNP) levels increased in the copper-laden model group compared to those of the control group. Histopathological and ultrastructural observations revealed that the myocardial collagen volume fraction (CVF), perivascular collagen area (PVCA) and cardiomyocyte cross-sectional area (CSA) were markedly elevated in the copper-laden model group compared with the control group. Furthermore, transmission electron microscopy (TEM) showed that the mitochondrial double-layer membrane was incomplete in the copper-laden model groups. Furthermore, cytochrome C (Cyt-C) expression was downregulated in mitochondria but upregulated in the cytoplasm in response to copper accumulation. In addition, Bcl-2 expression decreased, while Bax and cleaved caspase-3 levels increased. These results indicate that copper accumulation in cardiomyocyte mitochondria induces mitochondrial injury, and Cyt-C exposure and induces apoptosis, further resulting in heart damage.

10.
Front Psychol ; 13: 839267, 2022.
Article in English | MEDLINE | ID: mdl-35153964

ABSTRACT

This study takes a holistic view of flow and anti-flow experiences as interactive subsystems in blended English as a foreign language (EFL) learning and examines the dynamic complex construct in the field of instructed second language acquisition (ISLA). We first rephrased the 22-item Classroom Flow Questionnaire (CFQ) to better reflect the context of blended EFL learning. The modified CFQ was then administered to 661 first language Chinese EFL learners. A final 14-item Foreign Language Flow Scale (FLFS) was developed based on results from a series of reliability (e.g., item analysis, internal consistency, and test-retest reliability) and validity (e.g., construct validity, convergent validity, discriminant validity, and criterion validity) tests. Both exploratory and confirmatory factor analysis results have demonstrated that foreign language learning flow is a three-dimensional construct involving Enjoyment, Boredom, and Anxiety, thus conceptualizing and validating flow as a continuum with both positive and negative ends. Moreover, participants reported that they experienced the lowest degree of enjoyment, while with respect to the negative flow, they almost experienced similar degree of boredom and anxiety. The present study contributes to the development of the conceptual framework for flow in ISLA as well as constructive pedagogical implications for L2 researchers and educators. Suggestions for future research are also provided.

11.
ACS Appl Bio Mater ; 5(1): 59-81, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35014823

ABSTRACT

For decades, covalent organic frameworks (COFs) have attracted wide biomedical interest due to their unique properties including ease of synthesis, porosity, and adjustable biocompatibility. Versatile COFs can easily encapsulate various therapeutic drugs due to their extremely high payload and porosity. COFs with abundant functional groups can be surface-modified to achieve active targeting and enhance biocompatibility. In this paper, the latest developments of COFs in the biomedical field are summarized. First, the classification and synthesis of COFs are discussed. Cancer diagnosis and treatment based on COFs are studied, and the advantages and limitations of each method are discussed. Second, the specific preparation methods to obtain specific therapeutic properties are summarized. Finally, based on the combination and modification of COFs with various components, this review system summarizes different combination therapies. In addition, the main challenges faced in COF research and prospects for applying COFs to cancer diagnosis and treatment are evaluated. This review provides enlightening insights into the interdisciplinary research on COFs and applications in biomedicine, which highlight the great expectations for their further clinical transformation.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Humans , Metal-Organic Frameworks/therapeutic use , Neoplasms/diagnosis , Porosity
12.
Materials (Basel) ; 14(13)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202371

ABSTRACT

High-performance fiber-reinforced composites (FRCs) are widely used in bulletproof structures, in which the mechanical properties of the single fibers play a crucial role in ballistic resistance. In this paper, the quasi-static and dynamic mechanical properties of three commonly used fibers, single aramid III, polyimide (PI), and poly-p-phenylenebenzobisoxazole (PBO) fibers are measured by a small-scale tensile testing machine and mini-split Hopkinson tension bar (mini-SHTB), respectively. The results show that the PBO fiber is superior to the other two fibers in terms of strength and elongation. Both the PBO and aramid III fibers exhibit an obvious strain-rate strengthening effect, while the tensile strength of the PI fiber increases initially, then decreases with the increase in strain rate. In addition, the PBO and aramid III fibers show ductile-to-brittle transition with increasing strain rate, and the PI fiber possesses plasticity in the employed strain rate range. Under a high strain rate, a noticeable radial splitting and fibrillation is observed for the PBO fiber, which can explain the strain-rate strengthening effect. Moreover, the large dispersion of the strength at the same strain rate is observed for all the single fibers, and it increases with increasing strain rate, which can be ascribed to the defects in the fibers. Considering the effect of strain rate, only the PBO fiber follows the Weibull distribution, suggesting that the hypothesis of Weibull distribution for single fibers needs to be revisited.

13.
Materials (Basel) ; 14(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917270

ABSTRACT

Microstructure dependence of effective thermal conductivity of the coating was investigated to optimize the thermal insulation of columnar structure electron beam physical vapor deposition (EB-PVD coating), considering constraints by mechanical stress. First, a three-dimensional finite element model of multiple columnar structure was established to involve thermal contact resistance across the interfaces between the adjacent columnar structures. Then, the mathematical formula of each structural parameter was derived to demonstrate the numerical outcome and predict the effective thermal conductivity. After that, the heat conduction characteristics of the columnar structured coating was analyzed to reveal the dependence of the effective thermal conductivity of the thermal barrier coatings (TBCs) on its microstructure characteristics, including the column diameter, the thickness of coating, the ratio of the height of fine column to coarse column and the inclination angle of columns. Finally, the influence of each microstructural parameter on the mechanical stress of the TBCs was studied by a mathematic model, and the optimization of the inclination angle was proposed, considering the thermal insulation and mechanical stress of the coating.

14.
Sci Rep ; 11(1): 782, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33437000

ABSTRACT

It has been a key issue for photovoltaic (PV) cells to survive under mechanical impacts by tiny dust. In this paper, the performance degradation and the damage behavior of PV cells subjected to massive dust impact are investigated using laser-shock driven particle impact experiments and mechanical modeling. The results show that the light-electricity conversion efficiency of the PV cells decreases with increasing the impact velocity and the particles' number density. It drops from 26.7 to 3.9% with increasing the impact velocity from 40 to 185 m/s and the particles' number densities from 35 to 150/mm2, showing a reduction up to 85.7% when being compared with the intact ones with the light-electricity conversion efficiency of 27.2%. A damage-induced conversion efficiency degradation (DCED) model is developed and validated by experiments, providing an effective method in predicting the performance degradation of PV cells under various dust impact conditions. Moreover, three damage modes, including damaged conducting grid lines, fractured PV cell surfaces, and the bending effects after impact are observed, and the corresponding strength of each mode is quantified by different mechanical theories.

15.
J Mol Model ; 27(2): 55, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33511476

ABSTRACT

Evaluation of effective coarse graining (CG) degree and reasonable speedup relative to all-atomistic (AA) model was conducted to provide a basis for building appropriate larger-scale model. The reproducibility of atomistic conformation and temperature transferability both act as the analysis criteria to resolve the maximum acceptable CG degree. Taking short- and long time spans into account simultaneously in the estimation of computational speedup, a dynamic scaling factor is accessible in fitting mean squared displacement ratio of CG to AA as an exponential function. Computing loss in parallel running is an indispensable component in acceleration, which was also added in the evaluation. Subsequently, a quantified prediction of CG speedup arises as a multiplication of dynamic scaling factor, computing loss, time step, and the square of reduction in the number of degrees of freedom. Polyethylene oxide was adopted as a reference system to execute the direct Boltzmann inversion and iterative Boltzmann inversion. Bonded and non-bonded potentials were calculated in CG models with 1~4 monomers per bead. The effective CG degree was determined as two at the most with a speedup of four orders magnitude over AA in this study. Determination of effectiveness CG degree and the corresponding speedup prediction provide available tools in larger spatiotemporal-scale calculations.

16.
Carbohydr Polym ; 236: 115999, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172833

ABSTRACT

Cellulose nanofibers (CNFs) from kelp were prepared by cellulase treatment with lengths greater than 3 µm. CNFs were further oxidized by TEMPO-oxidized system, and the lengths of the oxidized CNFs (TEMPO-CNFs) were 0.6-1 µm. AFM and TEM images showed that intertwined CNFs fibers were divided into individual nanofibrils. The crystallinity of TEMPO-CNFs increased to 66.5 %. TGA analysis indicated that TEMPO-CNFs were more sensitive to temperature than cellulose and CNFs. FT-IR spectra revealed no changes in the basic cellulose structures of CNFs and TEMPO-CNFs. In the sunflower oil/water (20/80, v/v) model emulsions, the oil droplet sizes were less than 20 µm in CNFs emulsions, which became smaller in TEMPO-CNFs emulsions. Delamination was found in CNFs emulsions after three days of storage. Addition of NaCl increased the volumes of TEMPO-CNFs emulsions but enlarged the oil droplets sizes. TEMPO-CNFs emulsions had the largest volume with smallest and most homogeneous oil droplets at pH 3. TEMPO-CNFs emulsions showed good stability after storage for 30 days. Further, TEMPO-CNFs could also emulsify 50 % (v/v) of sunflower oil. All these results indicated that TEMPO-CNFs can be used in preparing Pickering emulsions.


Subject(s)
Cellulose, Oxidized/chemistry , Emulsions/chemistry , Kelp/chemistry , Laminaria/chemistry , Nanofibers/chemistry , Cyclic N-Oxides/chemistry , Particle Size , Sunflower Oil/chemistry
17.
Sci Rep ; 10(1): 4459, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32157170

ABSTRACT

In a myriad of engineering situations, we often hope to establish a model which can acquire load conditions around structures through flow features detection. A data-driven method is developed to predict the pressure on a cylinder from velocity distributions in its wake flow. The proposed deep learning neural network is constituted with convolutional layers and fully-connected layers: The convolutional layers can process the velocity information by features extraction, which are gathered by the fully-connected layers to obtain the pressure coefficients. By comparing the output data of the typical network with Computational Fluid Dynamics (CFD) results as reference values, it suggests that the present convolutional neural network (CNN) is able to predict the pressure coefficient in the vicinity of the trained Reynolds numbers with various inlet flow profiles and achieves a high overall precision. Moreover, a transfer learning approach is adopted to preserve the feature detection ability by keeping the parameters in the convolutional layers unchanged while shifting parameters in the fully-connected layers. Further results show that this transfer learning network has nearly the same precision while significantly lower cost. The active prospects of convolutional neural network in fluid mechanics have also been demonstrated, which can inspire more kinds of loads prediction in the future.

18.
RSC Adv ; 10(23): 13470-13479, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-35692739

ABSTRACT

Residual stresses play a crucial role in both light-electricity conversion performances and the lifespan of photovoltaic (PV) cells. In this paper, the residual stress of triple junction cells (i.e. GaInP/GaInAs/Ge) induced by laser-driven massive micro-particle impact is analyzed with a novel method based on backscattering Raman spectroscopy. The impact process, which induces damage to the PV cells and brings the residual stress, is also investigated by optical microscopy (OM) and Scanning Electron Microscopy (SEM). The results show that the PV cells would exhibit various damage patterns. At the same time, strong residual stresses up to hundreds of MPa introduced in the damaged PV cells after impact have been analysis, providing an effective perspective to better understand the damage behavior and residual stress features of PV cells during their service life.

19.
Artif Cells Nanomed Biotechnol ; 47(1): 1710-1721, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31062604

ABSTRACT

A dual-layer biomimetic cartilage scaffold was prepared by mimicking the structural design, chemical cues and mechanical characteristics of mature articular cartilage. The surface layer was made from collagen (COL), chitosan (CS) and hyaluronic acid sodium (HAS). The transitional layer with microtubule array structure was prepared with COL, CS and silk fibroin (SF). The PLAG microspheres containing kartogenin (KGN) and the polylysine-heparin sodium nanoparticles containing TGF-ß1 (TPHNs) were constructed for the surface, transitional layer, respectively. The SEM result showed that the dual-layer composite scaffold had a double structure similar to natural cartilage. The vitro biocompatibility experiment showed that the biomimetic cartilage scaffold with orientated porous structure was more conducive to the proliferation and adhesion of BMSCs. A rabbit KOA cartilage defect model was established and biomimetic cartilage scaffolds were implanted in the defect area. Compared with the surface layer and transitional layer scaffolds group, the results of dual-layer biomimetic cartilage scaffold group showed that the defects had been completely filled, the boundary between new cartilage and surrounding tissue was difficult to identify, and the morphology of cells in repair tissue was almost in accordance with the normal cartilage after 16 weeks. All those results indicated that the biomimetic cartilage scaffold could effectively repair the defect of KOA, which is related to the fact that the scaffold could guide the morphology, orientation, and proliferation and differentiation of BMSCs. This work could potentially lead to the development of multilayer scaffolds mimicking the zonal organization of articular cartilage.


Subject(s)
Biomimetic Materials/pharmacology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Osteoarthritis, Knee/pathology , Tissue Scaffolds/chemistry , Animals , Biomimetic Materials/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Chitosan/chemistry , Collagen/chemistry , Fibroins/chemistry , Hyaluronic Acid/chemistry , Male , Mechanical Phenomena , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Porosity , Rabbits , Surface Properties
20.
World Neurosurg ; 123: 168-173, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30447445

ABSTRACT

BACKGROUND: Nonmissile penetrating injuries to the head and neck caused by a steel bar are rare, and a standard management strategy is lacking. CASE DESCRIPTION: A 42-year-old woman sustained a steel bar injury with penetration of the head and neck. Computed tomography and three-dimensional reconstruction were performed for preoperative evaluation. Digital subtraction angiography was performed to confirm potential vascular injury. The steel bar was successfully removed through an open surgical procedure by a multidisciplinary team. CONCLUSIONS: Relevant literature regarding nonmissile penetrating injuries involving a steel bar was reviewed to propose appropriate management strategies. Comprehensive imaging evaluation and prompt surgery by a multidisciplinary team contributed to the successful removal of the steel bar.


Subject(s)
Foreign Bodies/surgery , Head Injuries, Penetrating/surgery , Neck Injuries/surgery , Accidental Falls , Adult , Female , Foreign Bodies/diagnostic imaging , Head Injuries, Penetrating/diagnostic imaging , Humans , Neck Injuries/diagnostic imaging , Steel
SELECTION OF CITATIONS
SEARCH DETAIL
...