Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202405592, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647330

ABSTRACT

In aqueous aluminum-ion batteries (AAIBs), the insertion/extraction chemistry of Al3+ often leads to poor kinetics, whereas the rapid diffusion kinetics of hydronium ions (H3O+) may offer the solution. However, the presence of considerable Al3+ in the electrolyte hinders the insertion reaction of H3O+. Herein, we report how oxygen-deficient α-MoO3 nanosheets unlock selective H3O+ insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al3+ due to excessively strong adsorption, while allowing H3O+ to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective H3O+ insertion in mild electrolytes.

2.
Int J Mol Med ; 53(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38214365

ABSTRACT

Following the publication of this article, a concerned reader drew to the Editor's attention that, in Fig. 9C on p. 2478 showing the results of Transwell invasion assay experiments, unexpected areas of similarity were identified in terms of the cellular patterns revealed both within the data panels for the six different experiments portrayed in this figure, and comparing among them. After having conducted an internal investigation, the Editor of International Journal of Molecular Medicine has reached the conclusion that the overlapping sections of data shown in this figure were unlikely to have arisen by coincidence. Therefore, on the grounds of a lack of confidence in the integrity of these data, the Editor has decided that the article should be retracted from the publication. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused, and thanks the interested reader for drawing this matter to our attention. [International Journal of Molecular Medicine 42: 2469­2480, 2018; DOI: 10.3892/ijmm.2018.3853].

3.
Adv Mater ; 36(9): e2309199, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38011897

ABSTRACT

Although S-scheme artificial photosynthesis shows promise for photocatalytic hydrogen production, traditional methods often overly concentrate on a single reduction site. This limitation results in inadequate redox capability and inefficient charge separation, which hampers the efficiency of the photocatalytic hydrogen evolution reaction. To overcome this limitation, a double S-scheme system is proposed that leverages dual reduction sites, thereby preserving energetic photo-electrons and holes to enhance apparent quantum efficiency. The design features a double S-scheme junction consisting of CdS nanospheres decorated with anatase TiO2 nanoparticles coupled with graphitic C3 N4 . The as-prepared catalyst exhibits a hydrogen evolution rate of 26.84 mmol g-1  h-1 and an apparent quantum efficiency of 40.2% at 365 nm. This enhanced photocatalytic hydrogen evolution is ascribed to the efficient charge separation and transport induced by the double S-scheme. Both theoretical calculations and comprehensive spectroscopy tests (both in situ and ex situ) affirm the efficient charge transport across the catalyst interface. Moreover, substituting the reduction-type catalyst CdS with other similar sulfides like ZnIn2 S4 , ZnS, MoS2 and In2 S3 further confirms the feasibility of the proposed double S-scheme configuration. The findings provide a pathway to designing more effective double S-scheme artificial photosynthetic systems, opening up fresh perspectives in enhancing photocatalytic hydrogen evolution performance.

4.
Adv Mater ; : e2305285, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37818725

ABSTRACT

Titanium dioxide (TiO2 ) stands out as a versatile transition-metal oxide with applications ranging from energy conversion/storage and environmental remediation to sensors and optoelectronics. While extensively researched for these emerging applications, TiO2 has also achieved commercial success in various fields including paints, inks, pharmaceuticals, food additives, and advanced medicine. Thanks to the tunability of their structural, morphological, optical, and electronic characteristics, TiO2 nanomaterials are among the most researched engineering materials. Besides these inherent advantages, the low cost, low toxicity, and biocompatibility of TiO2 nanomaterials position them as a sustainable choice of functional materials for energy conversion. Although TiO2 is a classical photocatalyst well-known for its structural stability and high surface activity, TiO2 -based photocatalysis is still an active area of research particularly in the context of catalyzing artificial photosynthesis. This review provides a comprehensive overview of the latest developments and emerging trends in TiO2 heterostructures and hybrids for artificial photosynthesis. It begins by discussing the common synthesis methods for TiO2 nanomaterials, including hydrothermal synthesis and sol-gel synthesis. It then delves into TiO2 nanomaterials and their photocatalytic mechanisms, highlighting the key advancements that have been made in recent years. The strategies to enhance the photocatalytic efficiency of TiO2 , including surface modification, doping modulation, heterojunction construction, and synergy of composite materials, with a specific emphasis on their applications in artificial photosynthesis, are discussed. TiO2 -based heterostructures and hybrids present exciting opportunities for catalyzing solar fuel production, organic degradation, and CO2 reduction via artificial photosynthesis. This review offers an overview of the latest trends and advancements, while also highlighting the ongoing challenges and prospects for future developments in this classical yet rapidly evolving field.

5.
Small Methods ; 7(11): e2300627, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37649214

ABSTRACT

Photocatalytic water splitting holds great promise as a sustainable and cost-effectiveness alternative for the production of hydrogen. Nevertheless, the practical implementation of this strategy is hindered by suboptimal visible light utilization and sluggish charge carrier dynamics, leading to low yield. MXene is a promising cocatalyst due to its high conductivity, abundance of active sites, tunable terminal functional groups, and great specific surface area. Homo-interface has perfect lattice matching and uniform composition, which are more conducive to photogenerated carriers' separation and migration. In this study, a novel ternary heterogeneous photocatalyst, a-TiO2 /H-TiO2 /Ti3 C2 MXene (MXTi), is presented using an electrostatic self-assembly method. Compared to commercial P25, pristine anatase, and rutile TiO2 , as-prepared MXTi exhibit exceptional photocatalytic hydrogen evolution performance, achieving a rate of 0.387 mmol h-1 . The significant improvement is attributable to the synergistic effect of homo-interface engineering and Ti3 C2 MXene, which leads to widened light absorption and efficient carrier transportation. The findings highlight the potential of interface engineering and MXene cocatalyst loading as a proactive approach to enhance the performance of photocatalytic water splitting, paving the way for more sustainable and efficient hydrogen production.

6.
Adv Mater ; 35(6): e2209141, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36412928

ABSTRACT

Designing heterojunction photocatalysts imitating natural photosynthetic systems has been a promising approach for photocatalytic hydrogen generation. However, in the traditional Z-Scheme artificial photosynthetic systems, the poor charge separation, and rapid recombination of photogenerated carriers remain a huge bottleneck. To rationally design S-Scheme (i.e., Step scheme) heterojunctions by avoiding the futile charge transport routes is therefore seen as an attractive approach to achieving high hydrogen evolution rates. Herein, a twin S-scheme heterojunction is proposed involving graphitic C3 N4 nanosheets self-assembled with hydrogen-doped rutile TiO2 nanorods and anatase TiO2 nanoparticles. This catalyst shows an excellent photocatalytic hydrogen evolution rate of 62.37 mmol g-1 h-1 and high apparent quantum efficiency of 45.9% at 365 nm. The significant enhancement of photocatalytic performance is attributed to the efficient charge separation and transfer induced by the unique twin S-scheme structure. The charge transfer route in the twin S-scheme is confirmed by in situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) spin-trapping tests. Femtosecond transient absorption (fs-TA) spectroscopy, transient-state surface photovoltage (TPV), and other ex situ characterizations further corroborate the efficient charge transport across the catalyst interface. This work offers a new perspective on constructing artificial photosynthetic systems with S-scheme heterojunctions to enhance photocatalytic performance.

7.
Exp Ther Med ; 22(4): 1184, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34475974

ABSTRACT

Cervical cancer (CC) is a type of gynecological malignancy that poses a significant threat to females. The aim of the present study was to examine the role of long intergenic non-protein coding RNA 1123 (LINC01123) and its underlying molecular mechanism in the development of CC. mRNA expression levels of LINC01123 and microRNA (miR)-361-3p in CC tissue samples and cell lines were evaluated using reverse transcription-quantitative PCR. Cell viability, migration and invasion were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing and Transwell assays. Moreover, a xenograft tumor model was established for elucidating the influence of LINC01123 knockdown on tumor growth in vivo. A dual-luciferase reporter assay was used to confirm the association between LINC01123 and miR-361-3p, and miR-361-3p and tetraspanin 1 (TSPAN1). Western blot analysis was used to determine TSPAN1 protein expression. LINC01123 expression was upregulated and miR-361-3p expression was reduced in CC tissue samples and cell lines. Knockdown of LINC01123 inhibited cell viability, migration and invasion in vitro, and suppressed tumor growth in vivo. Furthermore, LINC01123 targeted miR-361-3p and negatively regulated miR-361-3p expression. Overexpression of miR-361-3p inhibited cell viability, migration and invasion in HeLa and CaSki cells. Additionally, miR-361-3p targeted TSPAN1 and negatively regulated TSPAN1 expression. Inhibition of miR-361-3p and overexpression of TSPAN1 reversed the effect of LINC01123 knockdown on cell proliferation, migration and invasion in HeLa cells. Knockdown of LINC01123 inhibited cell proliferation, migration and invasion via miR-361-3p/TSPAN1 regulation in CC, which may present an effective target for treatment of CC.

8.
Nanoscale ; 11(20): 10114-10128, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31089662

ABSTRACT

In this paper, the rational design and synthesis of ZIF-8-derived ternary ZnO/ZnCo2O4/NiO wrapped by nanosheets is introduced. Polyhedral ternary ZnO/ZnCo2O4/NiO composites surrounded by nanosheets with different compositions are successfully fabricated through in situ growth on ZIF-8 templates and subsequent thermal annealing in air. Electrochemical investigation reveals that when the molar ratio of nickel nitrate to cobalt nitrate is 1, the composite material is more outstanding, which shows a high specific capacitance of 1136.4 F g-1 at 1 A g-1 and excellent cycling stability of 86.54% after 5000 cycles. Moreover, the excellent performance of this material is also confirmed by assembling an asymmetric supercapacitor. The assembled hybrid device can reach a large potential range of 0-1.6 V and deliver a high energy density of 46.04 W h kg-1 as well as the maximum power density of 7987.5 W kg-1.

9.
Int J Mol Med ; 42(5): 2469-2480, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30226564

ABSTRACT

Endometrial cancer is a life­threatening malignancy that affects women all over the world, and it has an increasing incidence. MicroRNAs (miRNAs/miRs) have been reported to be involved in cellular activities in endometrial cancer. The present study aimed to examine the effects of miR­183­5p on the epithelial­mesenchymal transition (EMT), proliferation, invasion, migration and apoptosis of human endometrial cancer cells by targeting Ezrin. Primary endometrial cancer tissues and adjacent normal tissues were obtained for the investigation. The protein expression of Ezrin in tissues was detected by immunohistochemistry. The expression level of miR­183­5p and the mRNA and protein expression levels of Ezrin and EMT­associated genes were determined by reverse transcription­quantitative polymerase chain reaction and western blot analyses. Endometrial cancer cells were treated with miR­183­5p inhibitors, small interfering RNA targeting Ezrin or miR­183­5p inhibitors. Cell proliferation, cell cycle, apoptosis, migration and invasion were then evaluated using an MTT assay, flow cytometry, scratch test and Transwell assay, respectively. Compared with normal adjacent tissues, the expression of miR­183­5p was decreased in endometrial cancer tissues, and the expression of Ezrin was significantly increased in endometrial cancer tissues. The protein expression of Ezrin was correlated with the severity and poor prognosis of endometrial cancer. Notably, the target prediction program and the luciferase reporter gene assay confirmed that miR­183­5p targeted and negatively regulated the expression of Ezrin. In vivo experiments revealed that the increased expression of miR­183­5p and decreased expression of Ezrin inhibited EMT, cell proliferation, migration and invasion, but promoted cell apoptosis in Ishikawa cells. These results suggested that the upregulated expression of miR­183­5p promoted apoptosis and suppressed the EMT, proliferation, invasion and migration of human endometrial cancer cells by downregulating Ezrin.


Subject(s)
Cytoskeletal Proteins/genetics , Endometrial Neoplasms/genetics , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Adult , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Down-Regulation , Endometrial Neoplasms/pathology , Female , Humans , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Up-Regulation
10.
Nanoscale ; 10(33): 15771-15781, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-30094442

ABSTRACT

Zeolitic imidazolate frameworks have stimulated great attention due to their potential applications in energy storage, catalysis, gas sensing, drug delivery etc. In this paper, the three-dimensional porous nanomaterial Co3O4/ZnCo2O4/CuO with hollow polyhedral nanocage structures and highly enhanced electrochemical performances was synthesized successfully by a zeolitic imidazolate framework-67 route. The composites hold the shape of the ZIF-67 templates well and the shell has multiple compositions. In the process, we first synthesized the nanostructure hydroxide precursors and then transformed them into the corresponding metal oxide composites by thermal annealing in air. In addition, the mass ratio of Zn to Cu in this material is discussed and optimized. We found that when the mass ratio is 3, the composite material has better electrochemical properties. When applied as an electrode material, Co3O4/ZnCo2O4/CuO-1 shows enhanced pseudocapacitive properties and good cycling stability compared with Co3O4/ZnCo2O4, Co3O4/CuO and Co3O4/ZnCo2O4/CuO-2, and Co3O4/ZnCo2O4/CuO-3. The assembled Co3O4/ZnCo2O4/CuO-1//AC hybrid device can be reversibly cycled in a large potential range of 0-1.6 V and can deliver a high energy density of 35.82 W h kg-1 as well as the maximum power density of 4799.25 W kg-1.

11.
Nanoscale ; 10(21): 10190-10202, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29786722

ABSTRACT

In recent years, the electrochemical properties of supercapacitors have been greatly improved due to continuous improvement in their composite materials. In this study, an urchin-like MgCo2O4@PPy/NF (MgCo2O4@polypyrrole/Ni foam) core-shell structure composite material was successfully developed as an electrode for supercapacitors. The MCP-2 composite material, obtained by a hydrothermal method and in situ chemical oxidative polymerization, shows a high specific capacitance of 1079.6 F g-1 at a current density of 1 A g-1, which is much higher than that of MC (783.6 F g-1) under the same conditions. Simultaneously, it has low resistance and an excellent cycling stability of 97.4% after 1000 cycles. Furthermore, an all-solid-state asymmetric supercapacitor (ASC) was assembled using MCP-2 as the positive electrode and activated carbon (AC) as the negative electrode. The MCP-2//AC ASC exhibits high specific capacitance (94 F g-1 at a current density of 0.4 A g-1), high energy density (33.4 W h kg-1 at a power density of 320 W kg-1), high volumetric energy density (17.18 mW h cm-3 at a volumetric power density of 0.16 W cm-3) and excellent cycling stability (retaining 91% of the initial value after 10 000 cycles). Simultaneously, the device has low leakage current and excellent self-discharge characteristics. All these results indicate that the MCP-2//AC ASC is a good energy storage device; it can support the function of two LEDs for 20 minutes. These results indicate that the MCP-2//AC ASC will play an important role in energy structures in the future.

12.
Int J Offender Ther Comp Criminol ; 59(7): 772-89, 2015 Jun.
Article in English | MEDLINE | ID: mdl-24406472

ABSTRACT

There are a variety of factors that have been associated with support for the use of community corrections in the West. However, little research has been completed to examine if these same factors are also associated with support for the use of community corrections in China. This exploratory study examined the degree of agreement and support of 764 Chinese citizens on the use of community corrections methods. Results indicated that most respondents supported the use of community corrections methods rather than traditional incarceration methods. In addition, five attitudes (the punishment perspective, the rehabilitation perspective, the humanitarian perception, cost-effectiveness, and risk) toward the use of community corrections methods were examined and all were found to be significantly associated with the support of community corrections in present-day China.


Subject(s)
Community Integration/legislation & jurisprudence , Community Integration/psychology , Deinstitutionalization/legislation & jurisprudence , Prisoners/legislation & jurisprudence , Prisoners/psychology , Public Opinion , Adult , Altruism , China , Community Integration/economics , Cost-Benefit Analysis , Deinstitutionalization/economics , Female , Humans , Male , Psychiatric Rehabilitation , Punishment , Risk Assessment , Surveys and Questionnaires
13.
J Hazard Mater ; 250-251: 181-9, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23454456

ABSTRACT

To enhance the activity of chemi-deposited palladium/nickel foam (Pd/Ni) electrodes used for an electrochemical dechlorination process, silver or copper was deposited electrochemically onto the nickel foam substrate (to give Ag/Ni or Cu/Ni) before the chemical deposition of palladium. The physicochemical properties of the resulting materials (Pd/Ni, Pd/Ag/Ni and Pd/Cu/Ni) were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and their electrochemical catalytic activities were evaluated by monitoring the electrochemical dechlorination of 2-chlorobiphenyl (2-CB) in strongly alkaline methanol/water solution. The results show that the Pd/Ag/Ni and Pd/Cu/Ni electrodes had consistently higher electrocatalytic activities and current efficiencies (CEs) compared with the untreated Pd/Ni electrode. The Pd/Ag/Ni electrode exhibited the highest activity. The dechlorination was also studied as a function of Pd loading, the Ag or Cu interlayer loadings, and the current density. The Pd loading and the interlayer loadings both had positive effects on the dechlorination reaction. Increasing the current density increased the reaction rate but reduced the CE. The improvement of the electrocatalytic activities of the Pd/Ni electrode by applying the interlayer of Ag or Cu resulted from the enlargement of the effective surface area of the electrode and the adjustment of the metal-H bond energy to the appropriate value, as well as the effective adsorption of 2-CB on Ag. Moreover, the high catalytic activity of the Pd/Ag/Ni electrode was maintained after six successive cyclic experiments, whereas Pd/Cu/Ni electrodes deactivate severely under the same conditions.


Subject(s)
Biphenyl Compounds/chemistry , Chlorine/chemistry , Copper/chemistry , Nickel/chemistry , Palladium/chemistry , Silver/chemistry , Catalysis , Chemistry, Physical , Chlorine/isolation & purification , Electrochemistry , Electrodes , Equipment Design , Methanol/chemistry , Microscopy, Electron, Scanning , Surface Properties , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...