Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Plant Biol ; 20(1): 299, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32600332

ABSTRACT

BACKGROUND: Sweet potato (Ipomoea batatas (L.) Lam.) is a highly heterozygous autohexaploid crop with high yield and high anthocyanin content. Purple sweet potato is the main source of anthocyanins, and the mechanism of anthocyanin biosynthesis in storage roots has not been fully revealed. RESULTS: In order to reveal the mechanism of anthocyanin biosynthesis and identify new homologous genes involved in anthocyanin biosynthesis in the storage roots of sweet potato, we used Ningzishu 1 and Jizishu 2 as parents to construct a F1 hybrid population. Seven anthocyanin-containing lines and three anthocyanin-free lines were selected for full-length and second-generation transcriptome analyses. A total of 598,375 circular consensus sequencing reads were identified from full-length transcriptome sequencing. After analysis and correction of second-generation transcriptome data, 41,356 transcripts and 18,176 unigenes were obtained. Through a comparative analysis between anthocyanin-containing and anthocyanin-free groups 2329 unigenes were found to be significantly differentially expressed, of which 1235 were significantly up-regulated and 1094 were significantly down-regulated. GO enrichment analysis showed that the differentially expressed unigenes were significantly enriched in molecular function and biological process. KEGG enrichment analysis showed that the up-regulated unigenes were significantly enriched in the flavonoid biosynthesis and phenylpropanoid biosynthesis pathways, and the down-regulated unigenes were significantly enriched in the plant hormone signal transduction pathway. Weighted gene co-expression network analysis of differentially expressed unigenes revealed that anthocyanin biosynthesis genes were co-expressed with transcription factors such as MYB, bHLH and WRKY at the transcription level. CONCLUSIONS: Our study will shed light on the regulatory mechanism of anthocyanin biosynthesis in sweet potato storage roots at the transcriptome level.


Subject(s)
Anthocyanins/biosynthesis , Gene Expression Regulation, Plant , Ipomoea batatas/genetics , Anthocyanins/genetics , DNA, Plant , Hybridization, Genetic , RNA, Messenger , RNA, Plant , Sequence Analysis, DNA , Species Specificity , Transcription Factors/metabolism , Transcriptome
2.
J Nanosci Nanotechnol ; 15(9): 6576-81, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26716214

ABSTRACT

Three-dimensional porous network TiO2 film (PW-film) and nanoparticles film were synthesized on surface of the Ti foil by a facile method to investigate both the photoelectrochemical and photocatalytic properties. The prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction spectroscopy (XRD) techniques. Methylene blue was used as a target molecule to estimate the photocatalytic activity of the films. Results revealed that the hydrothermal temperature and time have great influence on the crystal type and film morphology of TiO2 catalysts. A higher hydrothermal temperature is benefit for the formation of anatase phase of TiO2 nanotubes with PW-film, which had a large number of nodes. After investigation of the photoelectrochemical properties, a maximum photoconversion efficiency of 4.79% is observed for nanoparticles film with rutile phase of TiO2 under UV light illumination, which was incredible 2 times higher than that of the PW-film with anatase phase. It was shown that the morphology of TiO2 film contributes more significant effect on photocatalytic and photoelectric performance than its crystal type.


Subject(s)
Nanostructures/chemistry , Nanotechnology/methods , Photochemical Processes , Titanium/chemistry , Catalysis , Electrochemical Techniques , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL