Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Materials (Basel) ; 17(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930269

ABSTRACT

The interfacial properties between carbon fiber (CF) and thermoplastic resin are relatively weak, which can be problematic for composites in structural applications. Improving the surface roughness of CF is regarded as an effective way to enhance the interface of composites. However, most CF modifying methods are complex and time-consuming, which cannot meet the demand for industrial production. Therefore, it is of great significance to research a fast technique of CF surface modification to strengthen the interface of composites. Herein, a one-pot reaction based on the aryl diazonium salt modification was applied to enhance the interface between CF and poly ether ether ketone (PEEK) resin. Carbon nanotubes (CNTs) were linked to CF by p-phenylenediamine (PPD) via cyclic voltammetry (CV). The surface morphology, chemical characteristics and surface energy of modified CF illustrated the effectiveness of this method, and the interfacial properties of as-prepared modified CF/PEEK demonstrated the increased tendency. All the CF was treated within 5 min and the interfacial shear strength (IFSS) of CF/PEEK was increased to the maximum of 99.62 MPa by aryl diazonium salt modification. This work may shed some light on the industrialized application of CF reinforced high-performance engineering thermoplastic composites.

2.
Materials (Basel) ; 17(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893823

ABSTRACT

Carbon-fiber-reinforced polyimide (PI) resin composites have gained significant attention in the field of continuous-fiber-reinforced polymers, in which the interfacial bonding between carbon fiber and matrix resin has been an important research direction. This study designed and prepared a water-soluble thermoplastic polyamide acid sizing agent to improve the wettability of carbon fiber, enhance the van der Waals forces between carbon fiber and resin and strengthen the chemical bonding between the sizing agent and the alkyne-capped polyimide resin by introducing alkyne-containing functional groups into the sizing agent. This study found that the addition of a sizing layer effectively bridged the large modulus difference between the fiber and resin regions, resulting in the formation of an interfacial layer approximately 85 nm thick. This layer facilitated the transfer of stress from the matrix to the reinforced carbon fiber, leading to a significant improvement in the interfacial properties of the composites. Adjusting the concentration of the sizing agent showed that composites treated with 3% had the best interfacial properties. The interfacial shear strength increased from 82.08 MPa to 108.62 MPa (32.33%) compared to unsized carbon fiber. This research is significant for developing sizing agents suitable for carbon-fiber-reinforced polyimide composites.

3.
World Neurosurg ; 188: e81-e92, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750885

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) has been related to a higher risk of intervertebral disc degeneration (IVDD). However, the previous studies showed inconsistent results. We performed a systematic review and meta-analysis to comprehensively investigate the association between DM and IVDD in adult population. METHODS: Observational studies relevant to the aim of the meta-analysis were retrieved by search of electronic databases including PubMed, Web of Science, and Embase. A random-effects model was used to combine the data by incorporating the influence of between-study heterogeneity. RESULTS: Eleven observational studies involving 2,881,170 adults were included. Among them, 1,211,880 had DM. Compared to those with normoglycemia, patients with DM were associated with a higher odds ratio of IVDD (OR: 1.68, 95% confidence interval: 1.24 to 2.29, P<0.001; I2=98%). Further sensitivity analysis excluding database studies with IVDD diagnosed via International Classification of Diseases codes showed consistent results (odds ratio: 1.47, 95% confidence interval: 1.06 to 2.02, P=0.02) with no statistical heterogeneity (I2=0%). Subgroup analyses showed a stronger association between DM and IVDD in cohort studies than that in cross-sectional studies, in studies evaluating overall IVDD than that evaluating lumbar disc degeneration, and in studies that adjusted age and body mass index than that did not (P for subgroup differences all <0.05). Subgroup analyses according to study country and quality score did not significantly affect the association. CONCLUSIONS: DM may be associated with IVDD in adult population, which seems to be independent of age and body mass index.


Subject(s)
Intervertebral Disc Degeneration , Humans , Intervertebral Disc Degeneration/epidemiology , Diabetes Mellitus/epidemiology , Observational Studies as Topic/methods , Risk Factors
4.
Mol Neurobiol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780721

ABSTRACT

Ischemic stroke ranks among the leading causes of death and disability in humans and is accompanied by motor and cognitive impairment. However, the precise mechanisms underlying injury after stroke and effective treatment strategies require further investigation. Peroxiredoxin-1 (PRDX1) triggers an extensive inflammatory cascade that plays a pivotal role in the pathology of ischemic stroke, resulting in severe brain damage from activated microglia. In the present study, we used molecular dynamics simulation and nuclear magnetic resonance to detect the interaction between PRDX1 and a specific interfering peptide. We used behavioral, morphological, and molecular experimental methods to demonstrate the effect of PRDX1-peptide on cerebral ischemia-reperfusion (I/R) in mice and to investigate the related mechanism. We found that PRDX1-peptide bound specifically to PRDX1 and improved motor and cognitive functions in I/R mice. In addition, pretreatment with PRDX1-peptide reduced the infarct area and decreased the number of apoptotic cells in the penumbra. Furthermore, PRDX1-peptide inhibited microglial activation and downregulated proinflammatory cytokines including IL-1ß, IL-6, and TNF-α through inhibition of the TLR4/NF-κB signaling pathway, thereby attenuating ischemic brain injury. Our findings clarify the precise mechanism underlying PRDX1-induced inflammation after ischemic stroke and suggest that the PRDX1-peptide can significantly alleviate the postischemic inflammatory response by interfering with PRDX1 amino acids 70-90 and thereby inhibiting the TLR4/NF-κB signaling pathway. Our study provides a theoretical basis for a new therapeutic strategy to treat ischemic stroke.

5.
Materials (Basel) ; 17(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541477

ABSTRACT

The toughening modification of epoxy resin has received widespread attention. The addition of the second-phase resin has a good toughening effect on epoxy resin. In order to investigate the effect of the second-phase resin on the interphase of composites, in this work the interfacial properties of carbon fiber (CF)/epoxy resin with the second-phase resin structure were investigated. Methodologies including surface structure observation, chemical characteristics, surface energy of the CF, and micro-phase structure characterization of resin were tested, followed by the micro-interfacial performance of CF/epoxy composites before and after hygrothermal treatment. The results revealed that the sizing process has the positive effect of increasing the interfacial bonding properties of CF/epoxy. From the interfacial shear strength (IFSS) test, the introduction of the second phase in the resin reduced the interfacial bonding performance between the CF and epoxy. After the hygrothermal treatment, water molecules diffused along the interfacial paths between the two resins, which in turn created defects and consequently brought about a reduction in the IFSS.

6.
Aging Dis ; 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38421831

ABSTRACT

The receptor for advanced glycation end products (RAGE) contributes to diabetes-associated cognitive dysfunction (DACD) through the interaction of its C-terminal AAs 2-5 with mitogen-activated protein kinase kinase 3 (MKK3). However, the associated MKK3 binding site is unknown. Here, db/db mice were used as a model for type 2 diabetes. GST pull-down assays and AutoDock Vina simulations were conducted to identify the key RAGE binding site in MKK3. This binding site was mutated to investigate its effects on DACD and to elucidate the underlying mechanisms. The interaction of MKK3 and RAGE, the levels of inflammatory factors, and the activation of microglia and astrocytes were tested. Synaptic morphology and plasticity in hippocampal neurons were assessed via electrophysiological recordings and Golgi staining. Behavioral tests were used to assess cognitive function. In this study, MKK3 bound directly to RAGE via its lysine 329 (K329), leading to the activation of the nuclear factor-κB (NF-κB) signaling pathway, which in turn triggered neuroinflammation and synaptic dysfunction, and ultimately contributed to DACD. MKK3 mutation at K329 reversed synaptic dysfunction and cognitive deficits by downregulating the NF-κB signaling pathway and inhibiting neuroinflammation. These results confirm that neuroinflammation and synaptic dysfunction in the hippocampus rely on the direct binding of MKK3 and RAGE. We conclude that MKK3 K329 binding to C-terminal RAGE (ct-RAGE) is a key mechanism by which neuroinflammation and synaptic dysfunction are induced in the hippocampus. This study presents a novel mechanism for DACD and proposes a novel therapeutic avenue for neuroprotection in DACD.

7.
Plant Dis ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372723

ABSTRACT

Eucalyptus cinerea is an evergreen tree in the Myrtaceae. It is native to southern and eastern New South Wales and northern and eastern Victoria, Australia. It was introduced into China in the 1980s (Silva et al. 2011). Because of its unique shape, flexible stems, and rapid growth characteristics, it is widely used in the pulp industry and in decorative materials such as flower bouquets. In July 2022, 5- to 10-year-old E. cinerea showing symptoms of dehydration, withering and yellowing leaves, were found in forests and nurseries in Kunming and Songming, China. More than 37% of the trees showed these symptoms at each location, and disease severity was about 30%. Sixty symptomatic plants were collected from five tree nurseries. Diseased roots with 2-cm-long lesions were soaked in 75% ethanol for 15 s, 0.1% mercuric chloride for 2 min, rinsed with sterilized water, and placed on potato dextrose agar (PDA) at 25℃ for 3 days. Thirty samples were plated, and 21 isolates (YJLGF01 to YJLGF21) obtained, 11 strains with similar colony morphology (including representative strains YJLGF03 to YJLGF05). Three isolates (YJLGF03 to YJLGF05) were obtained by single-spore purification. On PDA, the colonies were circular with fluffy white to light yellow mycelium; the underside was yellowish brown. Conidiophores were bifurcated, with macroconidia borne terminally. The macroconidia were cylindrical with rounded, blunt ends, yellow to transparent, 1 to 3 septate (22.5 to 47.6 × 4.5 to 7.1 µm); microconidia were 0 to 1 septate (12.5 to 19.6 × 4.7 to 6.4 µm). Chlamydospores were spherical, rosary-like, and light yellow. Morphological characteristics were consistent with published descriptions of Dactylonectria pauciseptata (Piperkova et al. 2017). For molecular identification, the internal transcribed spacer (ITS), translation elongation factor 1- alpha (ef1-α) gene, and the beta-tubulin 2 (ß-tub2) gene were amplified and sequenced (ITS accessions OR735053, OR735054, OR735055; ß-tub2 accessios OR757447, OR757448, OR757449; ef1-α accessions OR757450, OR757451, OR757451) using published primers (White et al. 1990; Carbone et al. 1999). A phylogenetic tree was developed by Maximum Parsimony (MP) and Maximum Likelihood (ML) methods. These three isolates fell into the D. pauciseptata clade and were distinguished clearly from other species. Pathogenicity tests were performed using the same three isolates. Each isolate was cultured on PDA, and then subcultured in V8 juice broth on an orbital shaker at 180 RPM for 5 days. Conidia were collected by centrifugation at 6,000 RPM for 5 min, and then resuspended in sterilized distilled water (1×106 conidia/ml). Injured roots of one-year-old E. cinerea were soaked in the spore suspension for 1 h before being transplanted in sterile vermiculite. The plants were incubated at 25℃ with a 12 h photoperiod and 90% humidity. Five plants were inoculated as a group for each treatment and the entire experiment was completed three times. Among the inoculated plants, the incidence of disease development was 100%. A small sot appeared after 4 days, with a water-soaked lesion appearing and gradually expanding during days 5 to 7. After 10 days symptoms of root necrosis were similar to the those observed in the nursery, and aboveground plant parts had yellow, withering leaves and defoliation after 10 to 15 days. Control plants treated with sterile water showed no disease symptoms. The three strains were successfully reisolated from inoculated seedlings and confirmed them using DNA sequencing. No isolates were obtained from the control plants, thus fulfilling Koch's postulates. Dactylonectria pauciseptata was first reported from necrotic tissue of infected grape roots (Schroers et al. 2008). So far, it has been reported in Turkey, Canada, Brazil, Italy, and other countries (Erper et al. 2013; Úrbez-Torres et al. 2014; Santos et al. 2014). Based on our results, E. cinerea is a new host plant of D. pauciseptata in China. This disease is a threat to the nursery production of E. cinerea, potentially leading to a reduction in yields and economic losses.

8.
CNS Neurosci Ther ; 30(3): e14449, 2024 03.
Article in English | MEDLINE | ID: mdl-37665158

ABSTRACT

AIMS: Chronic hyperglycemia-induced inflammation of the hippocampus is an important cause of cognitive deficits in diabetic patients. The receptor for advanced glycation end products (RAGE), which is widely expressed in the hippocampus, is a crucial factor in this inflammation and the associated cognitive deficits. We aimed to reveal the underlying mechanism by which RAGE regulates neuroinflammation in the pathogenesis of diabetes-induced cognitive impairment. METHODS: We used db/db mice as a model for type 2 diabetes to investigate whether receptor-interacting serine/threonine protein kinase 1 (RIPK1), which is expressed in microglia in the hippocampal region, is a key protein partner for RAGE. GST pull-down assays and AutoDock Vina simulations were performed to identify the key structural domain in RAGE that binds to RIPK1. Western blotting, co-immunoprecipitation (Co-IP), and immunofluorescence (IF) were used to detect the levels of key proteins or interaction between RAGE and RIPK1. Cognitive deficits in the mice were assessed with the Morris water maze (MWM) and new object recognition (NOR) and fear-conditioning tests. RESULTS: RAGE binds directly to RIPK1 via the amino acid sequence (AAs) 362-367, thereby upregulating phosphorylation of RIPK1, which results in activation of the NLRP3 inflammasome in microglia and ultimately leads to cognitive impairments in db/db mice. We mutated RAGE AAs 362-367 to reverse neuroinflammation in the hippocampus and improve cognitive function, suggesting that RAGE AAs 362-367 is a key structural domain that binds directly to RIPK1. These results also indicate that hyperglycemia-induced inflammation in the hippocampus is dependent on direct binding of RAGE and RIPK1. CONCLUSION: Direct interaction of RAGE and RIPK1 via AAs 362-367 is an important mechanism for enhanced neuroinflammation in the hyperglycemic environment and is a key node in the development of cognitive deficits in diabetes.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Hyperglycemia , Animals , Mice , Cognition , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Hyperglycemia/complications , Inflammation , Neuroinflammatory Diseases , Receptor for Advanced Glycation End Products/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
9.
Angew Chem Int Ed Engl ; 62(52): e202314303, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37942727

ABSTRACT

Transition metal single atom electrocatalysts (SACs) with metal-nitrogen-carbon (M-N-C) configuration show great potential in oxygen evolution reaction (OER), whereby the spin-dependent electrons must be allowed to transfer along reactants (OH- /H2 O, singlet spin state) and products (O2 , triplet spin state). Therefore, it is imperative to modulate the spin configuration in M-N-C to enhance the spin-sensitive OER energetics, which however remains a significant challenge. Herein, we report a local field distortion induced intermediate to low spin transition by introducing a main-group element (Mg) into the Fe-N-C architecture, and decode the underlying origin of the enhanced OER activity. We unveil that, the large ionic radii mismatch between Mg2+ and Fe2+ can cause a FeN4 in-plane square local field deformation, which triggers a favorable spin transition of Fe2+ from intermediate (dxy 2 dxz 2 dyz 1 dz2 1 , 2.96 µB ) to low spin (dxy 2 dxz 2 dyz 2 , 0.95 µB ), and consequently regulate the thermodyna-mics of the elementary step with desired Gibbs free energies. The as-obtained Mg/Fe dual-site catalyst demonstrates a superior OER activity with an overpotential of 224 mV at 10 mA cm-2 and an electrolysis voltage of only 1.542 V at 10 mA cm-2 in the overall water splitting, which outperforms those of the state-of-the-art transition metal SACs.

10.
Pharmacol Res ; 196: 106933, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37729957

ABSTRACT

Both environmental and genetic factors contribute to the etiology of autoimmune thyroid disease (AITD) including Graves' disease (GD) and Hashimoto's thyroiditis (HT). However, the exact pathogenesis and interactions that occur between environmental factors and genes remain unclear, and therapeutic targets require further investigation due to limited therapeutic options. To solve such problems, this study utilized single-cell transcriptome, whole transcriptome, full-length transcriptome (Oxford nanopore technology), and metabolome sequencing to examine thyroid lesion tissues from 2 HT patients and 2 GD patients as well as healthy thyroid tissue from 1 control subject. HT patients had increased ATF4-positive thyroid follicular epithelial (ThyFoEp) cells, which significantly increased endoplasmic reticulum stress. The enhanced sustained stress resulted in cell death mainly including apoptosis and necroptosis. The ATF4-based global gene regulatory network and experimental validation revealed that N6-methyladenosine (m6A) reader hnRNPC promoted the transcriptional activity, synthesis, and translation of ATF4 through mediating m6A modification of ATF4. Increased ATF4 expression initiated endoplasmic reticulum stress signaling, which when sustained, caused apoptosis and necroptosis in ThyFoEp cells, and mediated HT development. Targeting hnRNPC and ATF4 notably decreased ThyFoEp cell death, thus ameliorating disease progression. Collectively, this study reveals the mechanisms by which microenvironmental cells in HT and GD patients trigger and amplify the thyroid autoimmune cascade response. Furthermore, we identify new therapeutic targets for the treatment of autoimmune thyroid disease, hoping to provide a potential way for targeted therapy.

11.
Neuroscience ; 528: 1-11, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37532012

ABSTRACT

Autism Spectrum Disorders (ASD) and schizophrenia are distinct neurodevelopmental disorders that share certain symptoms and genetic components. Both disorders show abnormalities in dendritic spines, which are the main sites of excitatory synaptic inputs. Recent studies have identified the synaptic scaffolding protein Shank3 as a leading candidate gene for both disorders. Mutations in the SHANK3 gene have been linked to both ASD and schizophrenia; however, how patient-derived mutations affect the structural plasticity of dendritic spines during brain development is unknown. Here we use live two photon in vivo imaging to examine dendritic spine structural plasticity in mice with SHANK3 mutations associated with ASD and schizophrenia. We identified shared and distinct phenotypes in dendritic spine morphogenesis and plasticity in the ASD-associated InsG3680 mutant mice and the schizophrenia-associated R1117X mutant mice. No significant changes in dendritic arborization were observed in either mutant, raising the possibility that synaptic dysregulation may be a key contributor to the behavioral defects previously reported in these mice. These findings shed light on how patient-linked mutations in SHANK3 affect dendritic spine dynamics in the developing brain, which provides insight into the synaptic basis for the distinct phenotypes observed in ASD and schizophrenia.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Schizophrenia , Mice , Animals , Autistic Disorder/genetics , Dendritic Spines/metabolism , Schizophrenia/genetics , Schizophrenia/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Brain/metabolism , Mutation/genetics , Microfilament Proteins/metabolism
12.
Epigenomics ; 15(11): 619-633, 2023 06.
Article in English | MEDLINE | ID: mdl-37554106

ABSTRACT

Aim: The purpose of this study was to elucidate the potential mechanisms of Alzheimer's disease (AD) induced by Type 2 diabetes mellitus (T2DM) through bioinformatics analysis, to provide new treatment targets for this disease. Methods: We used weighted gene coexpression network analysis and differentially expressed genes analysis to identify significantly differentially expressed genes shared by T2DM and AD. Molecular docking was used to predict possible protein targets for T2DM-induced AD. Results: The direct interaction of CD44 and STAT3 may play a significant role in the development of T2DM-induced AD. Conclusion: A new approach to treating T2DM-associated AD may be provided by these hub genes and their predicted molecular targets.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Molecular Docking Simulation , Gene Regulatory Networks , Computational Biology
13.
Mol Cancer ; 22(1): 99, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353784

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is a common type of lung cancer with a high risk of metastasis, but the exact molecular mechanisms of metastasis are not yet understood. METHODS: This study acquired single-cell transcriptomics profiling of 11 distal normal lung tissues, 11 primary LUAD tissues, and 4 metastatic LUAD tissues from the GSE131907 dataset. The lung multicellular ecosystems were characterized at a single-cell resolution, and the potential mechanisms underlying angiogenesis and metastasis of LUAD were explored. RESULTS: We constructed a global single-cell landscape of 93,610 cells from primary and metastatic LUAD and found that IGF2BP2 was specifically expressed both in a LUAD cell subpopulation (termed as LUAD_IGF2BP2), and an endothelial cell subpopulation (termed as En_IGF2BP2). The LUAD_IGF2BP2 subpopulation progressively formed and dominated the ecology of metastatic LUAD during metastatic evolution. IGF2BP2 was preferentially secreted by exosomes in the LUAD_IGF2BP2 subpopulation, which was absorbed by the En_IGF2BP2 subpopulation in the tumor microenvironment. Subsequently, IGF2BP2 improved the RNA stability of FLT4 through m6A modification, thereby activating the PI3K-Akt signaling pathway, and eventually promoting angiogenesis and metastasis. Analysis of clinical data showed that IGF2BP2 was linked with poor overall survival and relapse-free survival for LUAD patients. CONCLUSIONS: Overall, these findings provide a novel insight into the multicellular ecosystems of primary and metastatic LUAD, and demonstrate that a specific LUAD_IGF2BP2 subpopulation is a key orchestrator promoting angiogenesis and metastasis, with implications for the gene regulatory mechanisms of LUAD metastatic evolution, representing themselves as potential antiangiogenic targets.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Methylation , Ecosystem , Endothelial Cells , Phosphatidylinositol 3-Kinases , Neoplasm Recurrence, Local , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Tumor Microenvironment , RNA-Binding Proteins/genetics
14.
Sci Rep ; 13(1): 7452, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37156819

ABSTRACT

The prevalence and mortality of hepatocellular carcinoma (HCC) are still increasing. This study aimed to identify potential therapeutic targets related to patient prognosis. Data were downloaded from TCGA, GSE25097, GSE36376, and GSE76427 datasets. Differential analysis and enrichment analysis were performed in HCC. Cell deaths were evaluated, and least absolute shrinkage and selection operator regression (LASSO) regression was analyzed to screen candidate genes. Additionally, immune cell infiltration in HCC was assessed. We identified 4088 common DEGs with the same direction of differential expression in all four datasets, they were mainly enriched in immunoinflammation and cell cycle pathways. Apoptosis was significantly suppressed in HCC in GSEA and GSVA. After LASSO regression analysis, we screened CD69, CDC25B, MGMT, TOP2A, and TXNIP as candidate genes. Among them, CD69 significantly influenced the overall survival of HCC patients in both TCGA and GSE76427. CD69 may be a protective factor for outcome of HCC patients. In addition, CD69 was positive correlation with T cells and CD3E. CD69, CDC25B, MGMT, TOP2A, and TXNIP were potential diagnostic and prognostic target for HCC, especially CD69.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Biomarkers , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Genes, cdc , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Prognosis
15.
Chem Asian J ; 18(10): e202300150, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37017570

ABSTRACT

Design of non-noble metal electrocatalysts with high catalytic activity and stability to replace commercial Pt/C is crucial in the commercialization development of Zn-air batteries (ZABs). In this work, Co catalyst nanoparticles coupled with nitrogen-doped hollow carbon nanoboxes were well designed through zeolite-imidazole framework (ZIF-67) carbonization. As a result, the 3D hollow nanoboxes reduced the charge transport resistance, and the Co nanoparticles loaded on nitrogen-doped carbon supports exhibited excellent electrocatalytic performance for oxygen reduction reaction (ORR, E1/2 =0.823 V vs. RHE), similar to that of commercial Pt/C. Moreover, the designed catalysts showed an excellent peak density of 142 mW cm-2 when applied on ZABs. This work provides a promising strategy for the rational design of non-noble electrocatalysts with high performance for ZABs and fuel cells.

16.
Ann Transl Med ; 11(4): 169, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36923073

ABSTRACT

Background: Fibromyalgia (FM) is a common and intractable chronic musculoskeletal pain syndrome, but its exact underlying mechanisms are unknown. This study sought to identify biomarkers of FM and the underlying molecular mechanisms of the disease. Methods: FM-related gene expression profiles (GSE67311) and methylation profiles (GSE85506) were obtained from the Gene Expression Omnibus database, and a differential expression analysis was performed to identify the methylation factors. Subsequently, an enrichment analysis and gene set enrichment analysis (GSEA) were conducted to examine the methylation factors. In addition, the transcriptional regulators of the methylation factors were predicted, and key methylation factors were identified by a receiver operating characteristic curve analysis and nomogram models. Finally, the relationship between FM and cell death (pyroptosis, necroptosis, and cuproptosis) was assessed by a GSEA and gene set variation analysis. Results: A total of 455 methylation factors were identified. The enrichment analysis and GSEA results showed that methylation factors were clearly involved in the biological functions and signaling pathways related to neural, immune inflammation, and pain responses. The transcriptional regulator specificity protein 1 (SP1) may have a broad regulatory role. Finally, seven key methylation factors were identified, of which amino beta (A4) precursor protein binding family B member 2 (APBB2), A-kinase anchor protein 12 (AKAP12), and cluster of differentiation 38 (CD38) had strong clinical diagnostic power. In addition, AKAP12 and CD38 were significantly and negatively associated with sepsis, necrotizing sepsis, and cupular sepsis. Conclusions: Our study suggests that FM is associated with deoxyribonucleic acid methylation. The methylation factors APBB2, AKAP12, and CD38 may be potential biomarkers and should be further examined to provide a new biological framework of the possible disease mechanisms underlying FM.

17.
Int J Biochem Cell Biol ; 154: 106340, 2023 01.
Article in English | MEDLINE | ID: mdl-36442734

ABSTRACT

The ability to observe biological nanostructures forms a vital step in understanding their functions. Thanks to the invention of expansion microscopy (ExM) technology, super-resolution features of biological samples can now be easily visualized with conventional light microscopies. However, when the sample is physically expanded, the demand for deep and precise 3D imaging increases. Lattice lightsheet microscopy (LLSM), which utilizes a planar illumination that is confined within the imaging depth of high numerical aperture (NA=1.1) detection objective, fulfils such requirements. In addition, optical tiling could be implemented to increase the field of view (FoV) by moving the lightsheet without mechanically moving the samples or the objective for high-precision 3D imaging. In this review article, we will explain the principle of the tiling lattice lightsheet microscopy (tLLSM), which combines optical tiling and lattice lightsheet, and discuss the applications of tLLSM in ExM.


Subject(s)
Microscopy , Microscopy/methods
18.
Front Immunol ; 13: 849341, 2022.
Article in English | MEDLINE | ID: mdl-36389749

ABSTRACT

Ionizing radiation (IR) has been widely used in the diagnosis and treatment of clinical diseases, with radiation therapy (RT) being particularly rapid, but it can induce "bystander effects" that lead to biological responses in non-target cells after their neighboring cells have been irradiated. To help clarify how radiotherapy induces these effects, To help clarify how radiotherapy induces these effects, we analyzed single-cell RNA sequencing data from irradiated intestinal tissues on day 1 (T1 state), day 3 (T3 state), day 7 (T7 state), and day 14 (T14 state) after irradiation, as well as from healthy intestinal tissues (T0 state), to reveal the cellular level, molecular level, and involvement of different time irradiated mouse intestinal tissues in biological signaling pathways. In addition, changes in immune cell subpopulations and myeloid cell subpopulations after different radiation times were further explored, and gene regulatory networks (GRNs) of these cell subpopulations were constructed. Cellular communication between radiation-specific immune cells was explored by cell-to-cell communication events. The results suggest that radiotherapy trigger changes in immune cell subsets, which then reprogram the immune ecosystem and mediate systemic bystander effects. These radiation-specific immune cells participate in a wide range of cell-to-cell communication events. In particular, radiation-specific CD8+T cells appear to be at the core of communication and appear to persist in the body after recovery from radiotherapy, with enrichment analysis showing that radiation-specific CD8+ T cells are associated with ferroptosis. Thus, radiation-specific CD8+ T cells may be involved in cellular ferroptosis-mediated adverse effects caused by RT.


Subject(s)
Bystander Effect , Radiation Injuries , Animals , Mice , Bystander Effect/radiation effects , Radiation, Ionizing , Signal Transduction/radiation effects
19.
Materials (Basel) ; 15(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36234237

ABSTRACT

A metal-oxide-semiconductor high-electron-mobility transistor (MOS-HEMT) is proposed based on using a Al2O3/ZrO2 stacked layer on conventional AlGaN/GaN HEMT to suppress the gate leakage current, decrease flicker noise, increase high-frequency performance, improve power performance, and enhance the stability after thermal stress or time stress. The MOS-HEMT has a maximum drain current density of 847 mA/mm and peak transconductance of 181 mS/mm. The corresponding subthreshold swing and on/off ratio are 95 mV/dec and 3.3 × 107. The gate leakage current can be reduced by three orders of magnitude due to the Al2O3/ZrO2 stacked layer, which also contributes to the lower flicker noise. The temperature-dependent degradation of drain current density is 26%, which is smaller than the 47% of reference HEMT. The variation of subthreshold characteristics caused by thermal or time stress is smaller than that of the reference case, showing the proposed Al2O3/ZrO2 stacked gate dielectrics are reliable for device applications.

20.
PLoS Pathog ; 18(10): e1010820, 2022 10.
Article in English | MEDLINE | ID: mdl-36215225

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry worldwide. To investigate the role of miRNAs in the infection and susceptibility of PRRS virus (PRRSV), twenty-four miRNA libraries were constructed and sequenced from PRRSV-infected and mock-infected Porcine alveolar macrophages (PAMs) of Meishan, Landrace, Pietrain and Qingping pigs at 9 hours post infection (hpi), 36 hpi, and 60 hpi. The let-7 family miRNAs were significantly differentially expressed between PRRSV-infected and mock-infected PAMs from 4 pig breeds. The let-7 family miRNAs could significantly inhibit PRRSV-2 replication by directly targeting the 3'UTR of the PRRSV-2 genome and porcine IL6, which plays an important role in PRRSV replication and lung injury. NEAT1 acts as a competing endogenous lncRNA (ceRNA) to upregulate IL6 by attaching let-7 in PAMs. EMSA and ChIP results confirmed that ARID3A could bind to the promoter region of pri-let-7a/let-7f/let-7d gene cluster and inhibit the expression of the let-7 family. Moreover, the NF-κB signaling pathway inhibits the expression of the let-7 family by affecting the nuclear import of ARID3A. The pEGFP-N1-let-7 significantly reduced viral infections and pathological changes in PRRSV-infected piglets. Taken together, NEAT1/ARID3A/let-7/IL6 play significant roles in PRRSV-2 infection and may be promising therapeutic targets for PRRS.


Subject(s)
MicroRNAs , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Long Noncoding , 3' Untranslated Regions , Animals , DNA-Binding Proteins/genetics , Interleukin-6/metabolism , Macrophages, Alveolar/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine respiratory and reproductive syndrome virus/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Swine , Transcription Factors/genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...