Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Genome Res ; 34(4): 539-555, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38719469

ABSTRACT

Estrogen Receptor 1 (ESR1; also known as ERα, encoded by ESR1 gene) is the main driver and prime drug target in luminal breast cancer. ESR1 chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ESR1 chromatin action, along with its biological implications. Here, we use a large set of ESR1 ChIP-seq data from 70 ESR1+ breast cancers to explore inter-patient heterogeneity in ESR1 DNA binding to reveal a striking inter-tumor heterogeneity of ESR1 action. Of note, commonly shared ESR1 sites show the highest estrogen-driven enhancer activity and are most engaged in long-range chromatin interactions. In addition, the most commonly shared ESR1-occupied enhancers are enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ESR1 and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we can confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ESR1-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ESR1 landscape, with the most common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.


Subject(s)
Breast Neoplasms , Chromatin , Enhancer Elements, Genetic , Estrogen Receptor alpha , Hepatocyte Nuclear Factor 3-alpha , Polymorphism, Single Nucleotide , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Chromatin/metabolism , Chromatin/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Gene Expression Regulation, Neoplastic , Genetic Heterogeneity , Cell Line, Tumor
2.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961147

ABSTRACT

Estrogen Receptor alpha (ERα) is the main driver and prime drug target in luminal breast. ERα chromatin binding is extensively studied in cell lines and a limited number of human tumors, using consensi of peaks shared among samples. However, little is known about inter-tumor heterogeneity of ERα chromatin action, along with its biological implications. Here, we use a large set of ERα ChIP-seq data from 70 ERα+ breast cancers to explore inter-patient heterogeneity in ERα DNA binding, to reveal a striking inter-tumor heterogeneity of ERα action. Interestingly, commonly-shared ERα sites showed the highest estrogen-driven enhancer activity and were most-engaged in long-range chromatin interactions. In addition, the most-commonly shared ERα-occupied enhancers were enriched for breast cancer risk SNP loci. We experimentally confirm SNVs to impact chromatin binding potential for ERα and its pioneer factor FOXA1. Finally, in the TCGA breast cancer cohort, we could confirm these variations to associate with differences in expression for the target gene. Cumulatively, we reveal a natural hierarchy of ERα-chromatin interactions in breast cancers within a highly heterogeneous inter-tumor ERα landscape, with the most-common shared regions being most active and affected by germline functional risk SNPs for breast cancer development.

3.
Nanoscale ; 15(34): 13987-13996, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37466382

ABSTRACT

We study the change in the surface electromagnetic field provided by photoexcited silver nanoparticles as the field is disturbed by fluorescent carbon nanodots. Fluorescent carbon nanodots with an appropriate quantity and quality of surface functional groups are used to mediate the aggregation of silver nanoparticles of matching size and shape to form available nano-size conical structures. Carbon nanodots in the composite absorb and transfer additional photoenergy to the silver surface, resulting in energy aggregation within the cone structure and enhancement of the electromagnetic field in proximity to the silver surface. This elevated energy state is manifested in the strengthening of the SERS signal of the analytical probe 4-aminophenyl disulfide and the mechanism involved is elucidated by additional molecular spectroscopy studies.

4.
Nucleic Acids Res ; 51(3): e18, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36546757

ABSTRACT

The vast majority of disease-associated single nucleotide polymorphisms (SNP) identified from genome-wide association studies (GWAS) are localized in non-coding regions. A significant fraction of these variants impact transcription factors binding to enhancer elements and alter gene expression. To functionally interrogate the activity of such variants we developed snpSTARRseq, a high-throughput experimental method that can interrogate the functional impact of hundreds to thousands of non-coding variants on enhancer activity. snpSTARRseq dramatically improves signal-to-noise by utilizing a novel sequencing and bioinformatic approach that increases both insert size and the number of variants tested per loci. Using this strategy, we interrogated known prostate cancer (PCa) risk-associated loci and demonstrated that 35% of them harbor SNPs that significantly altered enhancer activity. Combining these results with chromosomal looping data we could identify interacting genes and provide a mechanism of action for 20 PCa GWAS risk regions. When benchmarked to orthogonal methods, snpSTARRseq showed a strong correlation with in vivo experimental allelic-imbalance studies whereas there was no correlation with predictive in silico approaches. Overall, snpSTARRseq provides an integrated experimental and computational framework to functionally test non-coding genetic variants.


Subject(s)
Genome-Wide Association Study , Regulatory Sequences, Nucleic Acid , Humans , Male , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Transcription Factors/genetics
5.
Nat Commun ; 13(1): 7367, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450752

ABSTRACT

Androgen receptor (AR) drives prostate cancer (PCa) development and progression. AR chromatin binding profiles are highly plastic and form recurrent programmatic changes that differentiate disease stages, subtypes and patient outcomes. While prior studies focused on concordance between patient subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains unexplored. Here we report high levels of AR chromatin binding heterogeneity in human primary prostate tumors, that overlap with heterogeneity observed in healthy prostate epithelium. Such heterogeneity has functional consequences, as somatic mutations converge on commonly-shared AR sites in primary over metastatic tissues. In contrast, less-frequently shared AR sites associate strongly with AR-driven gene expression, while such heterogeneous AR enhancer usage also distinguishes patients' outcome. These findings indicate that epigenetic heterogeneity in primary disease is directly informative for risk of biochemical relapse. Cumulatively, our results illustrate a high level of AR enhancer heterogeneity in primary PCa driving differential expression and clinical impact.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Regulatory Sequences, Nucleic Acid , Prostatic Neoplasms/genetics , Prostate , Chromatin
6.
Nat Genet ; 54(9): 1364-1375, 2022 09.
Article in English | MEDLINE | ID: mdl-36071171

ABSTRACT

Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.


Subject(s)
Chromatin , Prostatic Neoplasms , Chromatin/genetics , Gene Expression Regulation , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/genetics , Quantitative Trait Loci/genetics
7.
Cancer Discov ; 12(9): 2074-2097, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35754340

ABSTRACT

In prostate cancer, androgen receptor (AR)-targeting agents are very effective in various disease stages. However, therapy resistance inevitably occurs, and little is known about how tumor cells adapt to bypass AR suppression. Here, we performed integrative multiomics analyses on tissues isolated before and after 3 months of AR-targeting enzalutamide monotherapy from patients with high-risk prostate cancer enrolled in a neoadjuvant clinical trial. Transcriptomic analyses demonstrated that AR inhibition drove tumors toward a neuroendocrine-like disease state. Additionally, epigenomic profiling revealed massive enzalutamide-induced reprogramming of pioneer factor FOXA1 from inactive chromatin sites toward active cis-regulatory elements that dictate prosurvival signals. Notably, treatment-induced FOXA1 sites were enriched for the circadian clock component ARNTL. Posttreatment ARNTL levels were associated with patients' clinical outcomes, and ARNTL knockout strongly decreased prostate cancer cell growth. Our data highlight a remarkable cistromic plasticity of FOXA1 following AR-targeted therapy and revealed an acquired dependency on the circadian regulator ARNTL, a novel candidate therapeutic target. SIGNIFICANCE: Understanding how prostate cancers adapt to AR-targeted interventions is critical for identifying novel drug targets to improve the clinical management of treatment-resistant disease. Our study revealed an enzalutamide-induced epigenomic plasticity toward prosurvival signaling and uncovered the circadian regulator ARNTL as an acquired vulnerability after AR inhibition, presenting a novel lead for therapeutic development. See related commentary by Zhang et al., p. 2017. This article is highlighted in the In This Issue feature, p. 2007.


Subject(s)
Androgens , Prostatic Neoplasms, Castration-Resistant , ARNTL Transcription Factors/genetics , Androgens/pharmacology , Androgens/therapeutic use , Cell Line, Tumor , Circadian Rhythm , Drug Resistance, Neoplasm/genetics , Epigenomics , Humans , Male , Nitriles/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics
8.
Food Chem ; 383: 132415, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35180601

ABSTRACT

Solid-state SERS sensors are desirable point-of-care tools due to their portability. However, the level of SERS sensitivity achieved in liquid phase is rarely duplicated in the solid phase. We report herein the fabrication of a SERS sensor using alumina beads as the solid support and demonstrate its high SERS sensitivity with the model analyte 4-aminophenyl disulfide (4-APDS). The key to sensitivity is a hydrophilic-hydrophobic surface gradient constructed by sequentially coating with the surfactant cetyltrimethylammonium bromide and fluorous 1H,1H,2H,2H-perfluorooctyltriethoxysilane. The surface gradient, together with chloride etching, allows the detection of 4-APDS at the low concentration of 10-15 M. The practicality of the sensor beads is evidenced by successfully tracking the SERS fingerprints of five food colorant standards in the SERS spectra of a popular candy product. These SERS sensor beads are easy to prepare, convenient to use, and highly responsive as a SERS platform for the analysis of colorants.


Subject(s)
Food Coloring Agents , Silver , Food Analysis , Food Coloring Agents/analysis , Hydrophobic and Hydrophilic Interactions , Silver/chemistry , Spectrum Analysis, Raman
9.
J Med Chem ; 64(20): 14968-14982, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34661404

ABSTRACT

Prostate cancer (PCa) patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer (CRPC). Targeting the androgen receptor (AR) Binding Function-3 (BF3) site offers a promising option to treat CRPC. However, BF3 inhibitors have been limited by poor potency or inadequate metabolic stability. Through extensive medicinal chemistry, molecular modeling, and biochemistry, we identified 2-(5,6,7-trifluoro-1H-Indol-3-yl)-quinoline-5-carboxamide (VPC-13789), a potent AR BF3 antagonist with markedly improved pharmacokinetic properties. We demonstrate that VPC-13789 suppresses AR-mediated transcription, chromatin binding, and recruitment of coregulatory proteins. This novel AR antagonist selectively reduces the growth of both androgen-dependent and enzalutamide-resistant PCa cell lines. Having demonstrated in vitro efficacy, we developed an orally bioavailable prodrug that reduced PSA production and tumor volume in animal models of CRPC with no observed toxicity. VPC-13789 is a potent, selective, and orally bioavailable antiandrogen with a distinct mode of action that has a potential as novel CRPC therapeutics.


Subject(s)
Androgen Antagonists/pharmacology , Antineoplastic Agents/pharmacology , Drug Development , Prostatic Neoplasms, Castration-Resistant/drug therapy , Quinolines/pharmacology , Receptors, Androgen/metabolism , Administration, Oral , Androgen Antagonists/administration & dosage , Androgen Antagonists/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Male , Models, Molecular , Molecular Structure , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Quinolines/administration & dosage , Quinolines/chemistry , Structure-Activity Relationship
10.
Cancers (Basel) ; 13(14)2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34298700

ABSTRACT

Prostate cancer patients undergoing androgen deprivation therapy almost invariably develop castration-resistant prostate cancer. Resistance can occur when mutations in the androgen receptor (AR) render anti-androgen drugs ineffective or through the expression of constitutively active splice variants lacking the androgen binding domain entirely (e.g., ARV7). In this study, we are reporting the discovery of a novel AR-NTD covalent inhibitor 1-chloro-3-[(5-([(2S)-3-chloro-2-hydroxypropyl]amino)naphthalen-1-yl)amino]propan-2-ol (VPC-220010) targeting the AR-N-terminal Domain (AR-NTD). VPC-220010 inhibits AR-mediated transcription of full length and truncated variant ARV7, downregulates AR response genes, and selectively reduces the growth of both full-length AR- and truncated AR-dependent prostate cancer cell lines. We show that VPC-220010 disrupts interactions between AR and known coactivators and coregulatory proteins, such as CHD4, FOXA1, ZMIZ1, and several SWI/SNF complex proteins. Taken together, our data suggest that VPC-220010 is a promising small molecule that can be further optimized into effective AR-NTD inhibitor for the treatment of CRPC.

11.
Genome Biol ; 22(1): 149, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33975627

ABSTRACT

BACKGROUND: Androgen receptor (AR) is critical to the initiation, growth, and progression of prostate cancer. Once activated, the AR binds to cis-regulatory enhancer elements on DNA that drive gene expression. Yet, there are 10-100× more binding sites than differentially expressed genes. It is unclear how or if these excess binding sites impact gene transcription. RESULTS: To characterize the regulatory logic of AR-mediated transcription, we generated a locus-specific map of enhancer activity by functionally testing all common clinical AR binding sites with Self-Transcribing Active Regulatory Regions sequencing (STARRseq). Only 7% of AR binding sites displayed androgen-dependent enhancer activity. Instead, the vast majority of AR binding sites were either inactive or constitutively active enhancers. These annotations strongly correlated with enhancer-associated features of both in vitro cell lines and clinical prostate cancer samples. Evaluating the effect of each enhancer class on transcription, we found that AR-regulated enhancers frequently interact with promoters and form central chromosomal loops that are required for transcription. Somatic mutations of these critical AR-regulated enhancers often impact enhancer activity. CONCLUSIONS: Using a functional map of AR enhancer activity, we demonstrated that AR-regulated enhancers act as a regulatory hub that increases interactions with other AR binding sites and gene promoters.


Subject(s)
Enhancer Elements, Genetic , Receptors, Androgen/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Humans , Male , Molecular Sequence Annotation , Mutation/genetics , Polymorphism, Single Nucleotide/genetics , Prostatic Neoplasms/genetics , Reproducibility of Results
12.
J Mater Chem B ; 8(47): 10744-10753, 2020 12 21.
Article in English | MEDLINE | ID: mdl-33237068

ABSTRACT

Identification of snake venoms is a vital step in the treatment of fatal snakebites. In this study, we use the gold-thiolate interaction between a cysteine residue and gold nanoparticles to establish a SERS method for the differentiation of the venoms of Trimeresurus stejnegeri and Bungarus multicinctus. We confirm the preference of gold nanoparticles over silver for the SERS study of snake venoms by a binding experiment that also functions to differentiate the two venom samples by colorimetry and UV-vis spectroscopy. We report the SERS spectra of Trimeresurus stejnegeri and Bungarus multicinctus venoms for the first time. The spectra display distinct SERS signatures of the snake venoms on bone-shaped gold nanoparticles made with a house recipe. These signatures correlate to selected segments of the venom proteins due to the anchoring effect of the gold-cysteine bond. The method is quick as it accomplishes in situ isolation of the structure of interest to avoid tedious purification of the samples. The location of the interactive cysteine residue makes a novel characteristic of proteins in general.


Subject(s)
Cysteine/analysis , Gold/analysis , Metal Nanoparticles/analysis , Snake Venoms/analysis , Spectrum Analysis, Raman/methods , Animals , Bungarus , Colorimetry/methods , Crotalid Venoms , Cysteine/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Snake Venoms/chemistry , Snake Venoms/isolation & purification
13.
J Food Drug Anal ; 28(2): 239-247, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-35696108

ABSTRACT

Raman spectroscopy has been accepted as a useful tool for the characterization of natural products. However, to identify a specific compound in a mixture sample of natural products using Raman spectra alone is highly challenging if not impossible. We demonstrated an effective solution to such issues using a method combining statistical Raman spectroscopy and Mass spectrometry. The method was validated with a successful application to the identification of the major anthocyanin components in a purple yam (Dioscorea purpurea) extract. Of particular interest is that statistical grouping of the bioflavonoid standards that formed the database of this study was found to correspond closely to the conventional chemical classification. An initial theory on the chemical aspects of Raman spectroscopy pertaining to the connectivity of Raman-active functional groups in bioflavonoids was developed based on the statistical correlation between chemical classification and Raman spectroscopy.

14.
RSC Adv ; 9(11): 6048-6053, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-35517300

ABSTRACT

We have studied the adsorption of silver nanoparticles (AgNPs) and catechin on readily available commercial zeolite beads. Both adsorbates became available on the zeolite and were several fold more concentrated after a simple adsorption process, contributing to a 10-times overall increase in the collision probability between the two adsorbates. We were further able to detect AgNP-induced Surface Enhanced Raman Scattering (SERS) of catechin on the zeolite after sequential depositions of AgNPs and catechin on the zeolite using this process. To demonstrate high reproducibility, 93% of the zeolite sensors assembled this way were tested and proved satisfactory, and gave a distinctive catechin SERS signature. Preparation of the zeolite sensor was extremely easy with a nearly 90% yield.

15.
Mikrochim Acta ; 185(2): 120, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29594638

ABSTRACT

Making good use of interactions between analyte molecules and the metal nanoparticles is key to impact the detection limit in a surface-enhanced Raman scattering (SERS) based detections. SERS was applied to the analysis of catechin and it was found that the relative abundance of catechin in the sample to citrate-capped AgNPs and the aggregation agent NaCl plays a critical role in the quality of detection. At a component volume ratio of 6:2:1 (catechin:AgNPs:NaCl), catechin can be detected at µM levels. When the ratio is 12:2:1, Raman signals are discernible even at the attomolar concentration level (10-18 M). Under these conditions, the SERS mechanisms and the force of laser tweezers function best. The extent of signal enhancement enabled an ultrasensitive and reproducible Raman spectroscopic determination of catechin. Graphical abstract At a component volume ratio of 6:2:1 (catechin:AgNPs:NaCl), catechin was detected at 10-3 M to 10-6 M. When the ratio was 12:2:1, the discernible concentration of catechin was found to reach the attomolar level (10-18 M).

16.
Article in English | MEDLINE | ID: mdl-28411463

ABSTRACT

Methods to obtain pure proteins in large amounts are indispensible in protein research. We report here a large-scale/simultaneous isolation of taxon-specific crystallins (ɛ- and δ-crystallin) from the eye lenses of Mule duck. We also investigate the compositions, enzymatic activities, and structures of these purified taxon-specific proteins. A relatively mild method of ion-exchange chromatography was developed to fractionate ɛ-crystallin and δ-crystallin in large amount, ca. ∼6.60mg/g-lens and ∼41.0mg/g-lens, respectively. Both crystallins were identified by electrophoresis, HPLC, and MALDI-TOF-MS. ɛ-Crystallin, with native composition of Mr 142kDa, consisted of two subunits of 35kDa and 36kDa, while δ-Crystallin, with native molecular mass of 200kDa, comprised single subunit of Mr ∼50kDa. Both ɛ- and δ-crystallin were tetramers. The former showed lactate dehydrogenase (LDH) activity, while the latter appeared slightly active in an argininosuccinate lyase (ASL) assay. Raman spectroscopic results indicated that the secondary structures of ɛ- and δ-crystallin were predominantly α-helix as evidenced by the vibrational stretching of amide III over 1260cm-1 and amide I at 1255cm-1, in greatly contrast to the anti-parallel ß-sheet of α- and ß-crystallin as demonstrated by amide III at 1238cm-1 and amide I at 1672cm-1. The microenvironments of aromatic amino acids and the status of thiol groups also vary in different crystallins. The compositions, enzyme activities, and structures of the ɛ- and δ-crystalline of Mule duck are different from those of Muscovy duck (Cairina moschata) or Kaiya duck (Anas Platyrhynchos var. domestica), which reflect faithfully species specificity.


Subject(s)
Avian Proteins/chemistry , Chromatography, Ion Exchange/methods , Crystallins/chemistry , Ducks/metabolism , Lens, Crystalline/chemistry , Amino Acid Sequence , Animals , Avian Proteins/isolation & purification , Avian Proteins/metabolism , Chromatography, High Pressure Liquid/methods , Crystallins/isolation & purification , Crystallins/metabolism , Ducks/classification , Lens, Crystalline/enzymology , Lens, Crystalline/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Spectrum Analysis, Raman/methods
17.
J Alzheimers Dis ; 57(4): 1145-1156, 2017.
Article in English | MEDLINE | ID: mdl-28304304

ABSTRACT

The continuous increasing rate of patients suffering of Alzheimer's disease (AD) worldwide requires the adoption of novel techniques for non-invasive early diagnosis and monitoring of the disease. Here we review the various Raman spectroscopic techniques, including Fourier Transform-Raman spectroscopy, surface-enhanced Raman scattering spectroscopy, coherent anti-Stokes Raman scattering spectroscopy, and confocal Raman microspectroscopy, that could be used for the diagnosis of AD. These techniques have shown the potential to detect AD biomarkers, such as the amyloid-ß peptide and the tau protein, or the neurotransmitters involved in the disease (e.g., Glutamate and γ-Aminobutyric acid), or the typical structural alterations in specific brain areas. The possibility to detect the specific biomarkers in liquid biopsies and to obtain high resolution 3D microscope images of the affected area make the Raman spectroscopy a valuable ally in the early diagnosis and monitoring of AD.


Subject(s)
Alzheimer Disease/diagnostic imaging , Spectrum Analysis, Raman/methods , Animals , Early Diagnosis , Humans
18.
Cancer Res ; 77(2): 494-508, 2017 01 15.
Article in English | MEDLINE | ID: mdl-28069801

ABSTRACT

Aurora A-dependent NF-κB signaling portends poor prognosis in acute myeloid leukemia (AML) and other cancers, but the functional basis underlying this association is unclear. Here, we report that Aurora A is essential for Thr9 phosphorylation of the TRAF-interacting protein TIFA, triggering activation of the NF-κB survival pathway in AML. TIFA protein was overexpressed concurrently with Aurora A and NF-κB signaling factors in patients with de novo AML relative to healthy individuals and also correlated with poor prognosis. Silencing TIFA in AML lines and primary patient cells decreased leukemic cell growth and chemoresistance via downregulation of prosurvival factors Bcl-2 and Bcl-XL that support NF-κB-dependent antiapoptotic events. Inhibiting TIFA perturbed leukemic cytokine secretion and reduced the IC50 of chemotherapeutic drug treatments in AML cells. Furthermore, in vivo delivery of TIFA-inhibitory fragments potentiated the clearance of myeloblasts in the bone marrow of xenograft-recipient mice via enhanced chemotoxicity. Collectively, our results showed that TIFA supports AML progression and that its targeting can enhance the efficacy of AML treatments. Cancer Res; 77(2); 494-508. ©2016 AACR.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Aurora Kinase A/metabolism , Drug Resistance, Neoplasm/physiology , Leukemia, Myeloid, Acute/pathology , NF-kappa B/metabolism , Animals , Apoptosis , Blotting, Western , Cell Line, Tumor , Disease Progression , Disease-Free Survival , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , Heterografts , Humans , Immunoprecipitation , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Mice , Proportional Hazards Models , Signal Transduction/physiology
19.
J Biomed Opt ; 21(7): 75006, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27401934

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms of the gastrointestinal tract, and gastric adenocarcinomas are a common cancer worldwide. To differentiate GISTs from adenocarcinomas is important because the surgical processes for both are different; the former excises the tumor with negative margins, while the latter requires radical gastrectomy with lymph node dissection. Endoscopy with biopsy is used to distinguish GISTs from adenocarcinomas; however, it may cause tumor bleeding in GISTs. We reported here the confocal Raman microspectroscopy as an effective tool to differentiate GISTs, adenocarcinomas, and normal mucosae. Of 119 patients enrolled in this study, 102 patients underwent gastrectomy (40 GISTs and 62 adenocarcinomas), and 17 patients with benign lesions were obtained as normal mucosae. Raman signals were integrated for 100 s for each spot on the specimen, and 5 to 10 spots, depending on the sample size, were chosen for each specimen. There were significant differences among those tissues as evidenced by different Raman signal responding to phospholipids and protein structures. The spectral data were further processed and analyzed by using principal component analysis. A two-dimensional plot demonstrated that GISTs, adenocarcinomas, and normal gastric mucosae could be effectively differentiated from each other.


Subject(s)
Adenocarcinoma/diagnostic imaging , Gastrointestinal Stromal Tumors/diagnostic imaging , Mucous Membrane/diagnostic imaging , Spectrum Analysis, Raman , Stomach Neoplasms/diagnostic imaging , Humans , Reproducibility of Results
20.
PLoS One ; 11(7): e0159829, 2016.
Article in English | MEDLINE | ID: mdl-27472385

ABSTRACT

Gastric adenocarcinoma, a single heterogeneous disease with multiple epidemiological and histopathological characteristics, accounts for approximately 10% of cancers worldwide. It is categorized into four histological types: papillary adenocarcinoma (PAC), tubular adenocarcinoma (TAC), mucinous adenocarcinoma (MAC), and signet ring cell adenocarcinoma (SRC). Effective differentiation of the four types of adenocarcinoma will greatly improve the treatment of gastric adenocarcinoma to increase its five-year survival rate. We reported here the differentiation of the four histological types of gastric adenocarcinoma from the molecularly structural viewpoint of confocal Raman microspectroscopy. In total, 79 patients underwent laparoscopic or open radical gastrectomy during 2008-2011: 21 for signet ring cell carcinoma, 21 for tubular adenocarcinoma, 14 for papillary adenocarcinoma, 6 for mucinous carcinoma, and 17 for normal gastric mucosas obtained from patients underwent operation for other benign lesions. Clinical data were retrospectively reviewed from medical charts, and Raman data were processed and analyzed by using principal component analysis (PCA) and linear discriminant analysis (LDA). Two-dimensional plots of PCA and LDA clearly demonstrated that the four histological types of gastric adenocarcinoma could be differentiated, and confocal Raman microspectroscopy provides potentially a rapid and effective method for differentiating SRC and MAC from TAC or PAC.


Subject(s)
Adenocarcinoma/pathology , Spectrum Analysis, Raman/methods , Stomach Neoplasms/pathology , Adenocarcinoma/classification , Discriminant Analysis , Humans , Principal Component Analysis , Stomach Neoplasms/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...