Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cells ; 13(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38994997

ABSTRACT

Extracellular HSP90α (eHSP90α) is a promoter of tumor development and malignant progression. Patients with malignancies, including pancreatic ductal adenocarcinoma (PDAC), have generally shown 5~10-fold increases in serum/plasma eHSP90α levels. In this study, we developed a humanized antibody HH01 to target eHSP90α and evaluated its anticancer efficacy. HH01, with novel complementarity-determining regions, exhibits high binding affinity toward HSP90α. It recognizes HSP90α epitope sites 235AEEKEDKEEE244 and 251ESEDKPEIED260, with critical amino acid residues E237, E239, D240, K241, E253, and K255. HH01 effectively suppressed eHSP90α-induced invasive and spheroid-forming activities of colorectal cancer and PDAC cell lines by blocking eHSP90α's ligation with the cell-surface receptor CD91. In mouse models, HH01 potently inhibited the tumor growth of PDAC cell grafts/xenografts promoted by endothelial-mesenchymal transition-derived cancer-associated fibroblasts while also reducing serum eHSP90α levels, reflecting its anticancer efficacy. HH01 also modulated tumor immunity by reducing M2 macrophages and reinvigorating immune T-cells. Additionally, HH01 showed low aggregation propensity, high water solubility, and a half-life time of >18 days in mouse blood. It was not cytotoxic to retinal pigmented epithelial cells and showed no obvious toxicity in mouse organs. Our data suggest that targeting eHSP90α with HH01 antibody can be a promising novel strategy for PDAC therapy.


Subject(s)
Antibodies, Monoclonal, Humanized , HSP90 Heat-Shock Proteins , Pancreatic Neoplasms , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mice , Cell Line, Tumor , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Cell Proliferation/drug effects , Epithelial-Mesenchymal Transition/drug effects , Xenograft Model Antitumor Assays , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/metabolism , Endothelial-Mesenchymal Transition
2.
Article in English | MEDLINE | ID: mdl-32669265

ABSTRACT

The coronavirus (CoV) disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is a health threat worldwide. Viral main protease (Mpro, also called 3C-like protease [3CLpro]) is a therapeutic target for drug discovery. Herein, we report that GC376, a broad-spectrum inhibitor targeting Mpro in the picornavirus-like supercluster, is a potent inhibitor for the Mpro encoded by SARS-CoV-2, with a half-maximum inhibitory concentration (IC50) of 26.4 ± 1.1 nM. In this study, we also show that GC376 inhibits SARS-CoV-2 replication with a half-maximum effective concentration (EC50) of 0.91 ± 0.03 µM. Only a small portion of SARS-CoV-2 Mpro was covalently modified in the excess of GC376 as evaluated by mass spectrometry analysis, indicating that improved inhibitors are needed. Subsequently, molecular docking analysis revealed that the recognition and binding groups of GC376 within the active site of SARS-CoV-2 Mpro provide important new information for the optimization of GC376. Given that sufficient safety and efficacy data are available for GC376 as an investigational veterinary drug, expedited development of GC376, or its optimized analogues, for treatment of SARS-CoV-2 infection in human is recommended.


Subject(s)
Antiviral Agents/chemistry , Betacoronavirus/drug effects , Cysteine Endopeptidases/chemistry , Protease Inhibitors/chemistry , Pyrrolidines/chemistry , Viral Nonstructural Proteins/chemistry , Amino Acid Motifs , Animals , Antiviral Agents/pharmacology , Betacoronavirus/pathogenicity , Catalytic Domain , Chlorocebus aethiops , Coronavirus 3C Proteases , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Gene Expression , Molecular Docking Simulation , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyrrolidines/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , SARS-CoV-2 , Sulfonic Acids , Thermodynamics , Vero Cells , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
3.
Sci Rep ; 10(1): 8929, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32488021

ABSTRACT

Zika virus (ZIKV) of the flaviviridae family, is the cause of emerging infections characterized by fever, Guillain-Barré syndrome (GBS) in adults and microcephaly in newborns. There exists an urgent unmet clinical need for anti-ZIKV drugs for the treatment of infected individuals. In the current work, we aimed at the promising virus drug target, ZIKV NS3 protease and constructed a Pharmacophore Anchor (PA) model for the active site. The PA model reveals a total of 12 anchors (E, H, V) mapped across the active site subpockets. We further identified five of these anchors to be critical core anchors (CEH1, CH3, CH7, CV1, CV3) conserved across flaviviral proteases. The ZIKV protease PA model was then applied in anchor-enhanced virtual screening yielding 14 potential antiviral candidates, which were tested by in vitro assays. We discovered FDA drugs Asunaprevir and Simeprevir to have potent anti-ZIKV activities with EC50 values 4.7 µM and 0.4 µM, inhibiting the viral protease with IC50 values 6.0 µM and 2.6 µM respectively. Additionally, the PA model anchors aided in the exploration of inhibitor binding mechanisms. In conclusion, our PA model serves as a promising guide map for ZIKV protease targeted drug discovery and the identified 'previr' FDA drugs are promising for anti-ZIKV treatments.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery/methods , Serine Endopeptidases/drug effects , Viral Proteins/drug effects , Zika Virus/drug effects , Catalytic Domain/drug effects , Models, Chemical , Molecular Docking Simulation , Sequence Alignment , Zika Virus/enzymology , Zika Virus/genetics
4.
Sci Rep ; 5: 10938, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26077136

ABSTRACT

Tyrosine kinases regulate various biological processes and are drug targets for cancers. At present, the design of selective and anti-resistant inhibitors of kinases is an emergent task. Here, we inferred specific site-moiety maps containing two specific anchors to uncover a new binding pocket in the C-terminal hinge region by docking 4,680 kinase inhibitors into 51 protein kinases, and this finding provides an opportunity for the development of kinase inhibitors with high selectivity and anti-drug resistance. We present an anchor-based classification for tyrosine kinases and discover two type-C inhibitors, namely rosmarinic acid (RA) and EGCG, which occupy two and one specific anchors, respectively, by screening 118,759 natural compounds. Our profiling reveals that RA and EGCG selectively inhibit 3% (EGFR and SYK) and 14% of 64 kinases, respectively. According to the guide of our anchor model, we synthesized three RA derivatives with better potency. These type-C inhibitors are able to maintain activities for drug-resistant EGFR and decrease the invasion ability of breast cancer cells. Our results show that the type-C inhibitors occupying a new pocket are promising for cancer treatments due to their kinase selectivity and anti-drug resistance.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , ErbB Receptors/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Neoplasm Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Amino Acid Motifs , Animals , Antineoplastic Agents, Phytogenic/chemical synthesis , Antineoplastic Agents, Phytogenic/classification , Antineoplastic Agents, Phytogenic/pharmacology , Binding Sites , Biological Products/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Design , Drug Discovery , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Docking Simulation , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/classification , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sf9 Cells , Spodoptera , Structure-Activity Relationship , Syk Kinase
5.
PLoS One ; 9(1): e83160, 2014.
Article in English | MEDLINE | ID: mdl-24416160

ABSTRACT

Overexpression or/and activating mutation of FLT3 kinase play a major driving role in the pathogenesis of acute myeloid leukemia (AML). Hence, pharmacologic inhibitors of FLT3 are of therapeutic potential for AML treatment. In this study, BPR1J-340 was identified as a novel potent FLT3 inhibitor by biochemical kinase activity (IC50 approximately 25 nM) and cellular proliferation (GC50 approximately 5 nM) assays. BPR1J-340 inhibited the phosphorylation of FLT3 and STAT5 and triggered apoptosis in FLT3-ITD(+) AML cells. The pharmacokinetic parameters of BPR1J-340 in rats were determined. BPR1J-340 also demonstrated pronounced tumor growth inhibition and regression in FLT3-ITD(+) AML murine xenograft models. The combination treatment of the HDAC inhibitor vorinostat (SAHA) with BPR1J-340 synergistically induced apoptosis via Mcl-1 down-regulation in MOLM-13 AML cells, indicating that the combination of selective FLT3 kinase inhibitors and HDAC inhibitors could exhibit clinical benefit in AML therapy. Our results suggest that BPR1J-340 may be further developed in the preclinical and clinical studies as therapeutics in AML treatments.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzamides/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/therapeutic use , Urea/analogs & derivatives , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Benzamides/chemistry , Benzamides/pharmacokinetics , Benzamides/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Rats , Signal Transduction/drug effects , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology , Urea/therapeutic use , Vorinostat , fms-Like Tyrosine Kinase 3/metabolism
6.
J Med Chem ; 56(13): 5247-60, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23808327

ABSTRACT

Ligand efficiency (LE) and lipophilic efficiency (LipE) are two important indicators of "drug-likeness", which are dependent on the molecule's activity and physicochemical properties. We recently reported a furano-pyrimidine Aurora kinase inhibitor 4 (LE = 0.25; LipE = 1.75), with potent activity in vitro; however, 4 was inactive in vivo. On the basis of insights obtained from the X-ray co-crystal structure of the lead 4, various solubilizing functional groups were introduced to optimize both the activity and physicochemical properties. Emphasis was placed on identifying potential leads with improved activity as well as better LE and LipE by exercising tight control over the molecular weight and lipophilicity of the molecules. Rational optimization has led to the identification of Aurora kinase inhibitor 27 (IBPR001; LE = 0.26; LipE = 4.78), with improved in vitro potency and physicochemical properties, resulting in an in vivo active (HCT-116 colon cancer xenograft mouse model) anticancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Aurora Kinase A/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aurora Kinase A/chemistry , Aurora Kinase A/metabolism , Body Weight/drug effects , Cell Proliferation/drug effects , Crystallography, X-Ray , Drug Design , Furans/chemistry , HCT116 Cells , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Ligands , Lipids/chemistry , Male , Mice , Mice, Nude , Models, Chemical , Models, Molecular , Molecular Structure , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phenylurea Compounds/chemical synthesis , Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Xenograft Model Antitumor Assays
7.
Mol Oncol ; 6(3): 299-310, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22366308

ABSTRACT

An acquired mutation (T790M) in the epidermal growth factor receptor (EGFR) accounts for half of all relapses in non-small cell lung cancer (NSCLC) patients who initially respond to EGFR kinase inhibitors. In this study, we demonstrated for the first time that EGFR-T790M interacts with the cytoskeletal components, myosin heavy chain 9 (MYH9) and ß-actin, in the nucleus of H1975 cells carrying the T790M-mutant EGFR. The interactions of EGFR with MYH9 and ß-actin were reduced in the presence of blebbistatin, a specific inhibitor for the MYH9-ß-actin interaction, suggesting that the EGFR interaction with MYH9 and ß-actin is affected by the integrity of the cytoskeleton. These physical interactions among MYH9, ß-actin, and EGFR were also impaired by CL-387,785, a kinase inhibitor for EGFR-T790M. Furthermore, CL-387,785 and blebbistatin interacted in a synergistic fashion to suppress cell proliferation and induce apoptosis in H1975 cells. The combination of CL-387,785 and blebbistatin enhanced the down-regulation of cyclooxygenase-2 (COX-2), a transcriptional target of nuclear EGFR. Overall, our findings demonstrate that disrupting EGFR interactions with the cytoskeletal components enhanced the anti-cancer effects of CL-387,785 against H1975 cells, suggesting a novel therapeutic approach for NSCLC cells that express the drug-resistant EGFR-T790M.


Subject(s)
ErbB Receptors/metabolism , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , Myosin Type II/metabolism , Actins/metabolism , Apoptosis/genetics , Apoptosis/physiology , Blotting, Western , Cell Line , Cell Nucleus/metabolism , Cell Proliferation , Cyclooxygenase 2/metabolism , Flow Cytometry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Immunoprecipitation , Myosin Type II/antagonists & inhibitors , Protein Binding , Quinazolines/pharmacology , RNA Interference , Real-Time Polymerase Chain Reaction
8.
Biochem Pharmacol ; 81(11): 1263-70, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21406185

ABSTRACT

Epidermal growth factor receptor (EGFR) is a proven therapeutic target to treat a small subset of non small cell lung cancer (NSCLC) harboring activating mutations within the EGFR gene. However, many NSCLC patients are not sensitive to EGFR inhibitors, suggesting that other factors are implicated in survival of NSCLC cells. Signal transducers and activators of transcription 3 (Stat3) function as transcription factor to mediate cell survival and differentiation and the dysregulation of Stat3 has been discovered in a number of cancers. In this study, we found that a small molecule, reactivation of p53 and induction of tumor cell apoptosis (RITA), showed anti-cancer activity against gefitinib-resistant H1650 cells through a p53-independent pathway. Stat3 suppression by RITA attracted our attention to investigate the role of Stat3 in sustaining survival of H1650 cells. Pharmacological and genetic approaches were employed to down-regulate Stat3 in H1650 cells. WP1066, a known Stat3 inhibitor, was shown to exhibit inhibitory effect on the growth of H1650 cells. Meanwhile, apoptosis activation by siRNA-mediated down-regulation of Stat3 in H1650 cells provides more direct evidence for the involvement of Stat3 in viability maintenance of H1650 cells. Moreover, as a novel identified Stat3 inhibitor, RITA increased doxorubicin sensitivity of H1650 cells in vitro and in vivo, suggesting that doxorubicin accompanied with Stat3 inhibitors may be considered as an alternative strategy to treat NSCLC patients who have inherent resistance to doxorubicin. Overall, our observations reveal that targeting Stat3 may be an effective treatment for certain NSCLC cells with oncogenic addition to Stat3.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Quinazolines/pharmacology , STAT3 Transcription Factor/antagonists & inhibitors , Blotting, Western , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Flow Cytometry , Gefitinib , Humans , Lung Neoplasms/metabolism , Pyridines/pharmacology , RNA Interference , STAT3 Transcription Factor/metabolism , Tumor Suppressor Protein p53/metabolism , Tyrphostins/pharmacology
9.
J Med Chem ; 53(13): 4980-8, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20550212

ABSTRACT

A focused library of furanopyrimidine (350 compounds) was rapidly synthesized in parallel reactors and in situ screened for Aurora and epidermal growth factor receptor (EGFR) kinase activity, leading to the identification of some interesting hits. On the basis of structural biology observations, the hit 1a was modified to better fit the back pocket, producing the potent Aurora inhibitor 3 with submicromolar antiproliferative activity in HCT-116 colon cancer cell line. On the basis of docking studies with EGFR hit 1s, introduction of acrylamide Michael acceptor group led to 8, which inhibited both the wild and mutant EGFR kinase and also showed antiproliferative activity in HCC827 lung cancer cell line. Furthermore, the X-ray cocrystal study of 3 and 8 in complex with Aurora and EGFR, respectively, confirmed their hypothesized binding modes. Library construction, in situ screening, and structure-based drug design (SBDD) strategy described here could be applied for the lead identification of other kinases.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , ErbB Receptors/antagonists & inhibitors , Furans/chemistry , Lung Neoplasms/enzymology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrimidines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aurora Kinases , Blotting, Western , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Crystallography, X-Ray , ErbB Receptors/metabolism , Furans/chemical synthesis , Furans/pharmacology , Humans , Inhibitory Concentration 50 , Lung Neoplasms/drug therapy , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Spectrometry, Mass, Fast Atom Bombardment
10.
Stem Cells ; 23(7): 1012-20, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15941858

ABSTRACT

Recent studies have shown that adult tissues contain stem/ progenitor cells capable of not only generating mature cells of their tissue of origin but also transdifferentiating themselves into other tissue cells. Murine skin-derived precursor cells, for example, have been described as unique, nonmesenchymal-like stem cells capable of mesodermal and ectodermal neurogenic differentiation. Human-derived skin precursors are less well characterized. In this study, the isolation and characterization of adherent, mesenchymal stem cell-like cells from human scalp tissue (hSCPs) are described. hSCPs initially isolated by both medium-selection (ms-hSCPs) and single-cell (c-hSCPs) methods were cultured in medium containing epidermal growth factor and fibroblast growth factor-beta. Cultured ms-hSCPs and c-hSCPs demonstrated a consistent growth rate, continuously replicated in cell culture, and displayed a stable phenotype indistinguishable from each other. Both hSCPs expressed surface antigen profile (CDw90, SH2, SH4, CD105, CD166, CD44, CD49d-e, and HLA class I) similar to that of bone marrow mesenchymal stem cells (BM-MSCs). The growth kinetics, surface epitopes, and differentiation potential of c-hSCP cells were characterized and compared with BM-MSCs. In addition to differentiation along the osteogenic, chondrogenic, and adipogenic lineages, hSCPs can effectively differentiate into neuronal precursors evident by neurogenic gene expression of glial fibrillary acid protein, NCAM, neuron filament-M, and microtubule-associated protein 2 transcripts. Therefore, hSCPs may potentially be a better alternative of BM-MSCs for neural repairing, in addition to their other mesenchymal regenerative capacity. Our study suggests that hSCPs may provide an alternative adult stem cell resource that may be useful for regenerative tissue repair and autotransplantations.


Subject(s)
Gene Expression Regulation , Mesenchymal Stem Cells/cytology , Neurons/metabolism , Scalp/metabolism , Adipocytes/metabolism , Adult , Animals , Bone Marrow Cells/cytology , Calcium/metabolism , Cell Culture Techniques/methods , Cell Differentiation , Cell Lineage , Cell Membrane/metabolism , Cells, Cultured , Chondrocytes/metabolism , Culture Media , Cytokines/metabolism , Fibroblast Growth Factors/metabolism , Flow Cytometry , Humans , Mice , Middle Aged , Osteocytes/metabolism , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Scalp/cytology , Skin/metabolism , Time Factors , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...