Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36772261

ABSTRACT

In this study, we developed a fiber-optic sensing system with an eight-probe array for measuring the spatial distributions of air volume (void) fractions in bubbly flows. Initially, we performed calibration experiments in a cylindrical tank by using a fiber-optic sensing system with a single probe to determine the relationship between the time fraction ratio of bubble signals and void fractions. A high correlation coefficient was obtained between the time fraction ratio and the void fraction, suggesting that the proposed fiber-optic sensing system can measure local void fractions of up to 18%. Subsequently, we used the proposed fiber-optic sensing system with the eight-probe array to measure the spatial distribution of air volume fractions in a bubbly flow caused by breaking waves near a submerged breakwater. The effects of different variables, including the incident wave height, period, and width of the breakwater, on the spatial distribution of the void fraction on the lee side of the breakwater were systematically studied. The results demonstrated that the proposed fiber-optic sensing system can be used to determine the spatial distribution of air volume fractions in bubbly flows.

2.
Sensors (Basel) ; 22(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36502012

ABSTRACT

A lab-fabricated ocean bottom seismometer was modified and deployed terrestrially to detect low-frequency (<10 Hz) ground vibrations produced by debris flows. A frequency−response test of the new seismometer revealed that it can detect seismic signals at frequencies of 0.3−120 Hz. Its seismic ground motion detection ability was investigated by comparing its measurements of seismic signals produced by rockfalls with those of a geophone. Two new seismometers were deployed at the Aiyuzi Stream, Nantou County, Taiwan, in September 2012. Seismic signals produced by two local earthquakes, two teleseisms, and three debris flows detected by the seismometer in 2013 and 2014 were discussed. The seismic signal frequencies of the local earthquakes and teleseisms (both approximately 1800 km apart) were 0.3−30 and <1 Hz, respectively. Moreover, seismometer measurements revealed that seismic signals generated by debris flows can have minimum frequencies as low as 2 Hz. Time-matched CCD camera images revealed that debris flow surge fronts with larger rocks have lower minimum frequencies. Finally, because the seismometer can detect low-frequency seismic waves with low spatial decay rates, it was able to detect one debris flow approximately 3 min and 40 s before it arrived.


Subject(s)
Vibration , Taiwan
3.
Sensors (Basel) ; 22(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35632236

ABSTRACT

In this study, a pressurized, water-filled impedance tube (WFIT) was developed to measure the reflection coefficients of sound-absorbing materials under various hydrostatic pressures. The developed WFIT was calibrated using a two-microphone, three-parameter calibration method (3PCM). The accuracy and repeatability of the measured reflection coefficients for the water-air interface in the WFIT were determined by comparing these coefficients with corresponding theoretical reflection coefficients. The WFIT was then used to measure the acoustic reflection coefficient of a porous rubber specimen on three dates, and the corresponding measurement results exhibited satisfactory repeatability. The aforementioned impedance tube was also used to measure the reflection coefficient of a porous rubber specimen under a hydrostatic pressure of 4 Patm three times on the same day, and one time each on three days, using the same experimental setup and measurement procedure. The results obtained in the aforementioned tests also exhibited satisfactory repeatability. Finally, the WFIT was used to measure the reflection coefficients of porous rubber specimens with various thicknesses under different hydrostatic pressures. The results of this study indicate that the developed WFIT calibrated with the 3PCM can achieve suitable repeatability in the measurement of the reflection coefficients of sound-absorbing materials under various hydrostatic pressures.


Subject(s)
Rubber , Water , Calibration , Electric Impedance , Sound
4.
Sensors (Basel) ; 22(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35336589

ABSTRACT

This study investigates the performance of a passive time-reversal mirror (TRM) combined with acoustic ray theory in localizing underwater sound sources with high frequencies (3-7 kHz). The TRM was installed on a floating buoy and comprised four hydrophones. The ray-tracing code BELLHOP was used to determine the transfer function between a sound source and a field point. The transfer function in the frequency domain obtained from BELLHOP was transformed into the time domain. The pressure field was then obtained by taking the convolution of the transfer function in the time domain with the time-reversed signals that were received by the hydrophones in the TRM. The location with the maximum pressure value was designated as the location of the source. The performance of the proposed methodology for source localization was tested in a towing tank and in the ocean. The aforementioned tests revealed that even when the distances between a source and the TRM were up to 1600 m, the distance deviations between estimated and actual source locations were mostly less than 2 m. Errors originated mainly from inaccurate depth estimation, and the literature indicates that they can be reduced by increasing the number of TRM elements and their apertures.

5.
Mar Pollut Bull ; 137: 566-581, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30503470

ABSTRACT

In this study, we propose a two-step strategy for tracking oil-spill trajectories. First, an X-band radar is established to monitor oil spills. Accordingly, we propose a radar image-processing technique for identifying the oil slicks from the nautical radar images. Second, we apply the SCHISM to determine the water surface elevations and currents at the event site and obtain the trajectories of the oil slicks using a Lagrangian particle-tracking method incorporated in the SCHISM. An oil-spill event caused by the container ship T. S. Taipei is used as a case study for testing the capability of the proposed oil-tracking strategy. The SCHISM simulation results for the fouled coastline obtained using the wind data from a nearby data buoy agree quite well with those obtained from field observations. However, the predicted fouled coastline based on the forecasted wind data is unsatisfactory. The reasons for the unsatisfactory prediction are discussed and revealed.


Subject(s)
Petroleum Pollution/analysis , Radar , Ships , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Image Processing, Computer-Assisted/methods , Taiwan , Wind
6.
Sensors (Basel) ; 17(1)2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28106763

ABSTRACT

In this work, a Global Navigation Satellite System (GNSS) buoy that utilizes a Virtual Base Station (VBS) combined with the Real-Time Kinematic (RTK) positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS) modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan). Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC) sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas.

7.
Sensors (Basel) ; 12(5): 5835-49, 2012.
Article in English | MEDLINE | ID: mdl-22778616

ABSTRACT

This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...