Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35268737

ABSTRACT

The valorization of cellulose and lignin residues in an integrated biorefinery is of great significance to improve the overall economics but has been challenged by their structural recalcitrance, especially for lignin residue. In this work, a facile chemical conversion route to fabricating functional UV-blocking cellulose/lignin composite films through a facile dissolution-regeneration process using these biomass residues was proposed. Three representative lignin residues, i.e., aspen and poplar wood lignin, and corn stover (CS) lignin were assessed for their feasibility for the film fabrication. The UV-blocking performance of the composite films were comparatively investigated. Results showed that all these three lignin residues could enhance the UV-blocking property of the composite films, corresponding to the reduction in the optical energy band gap from 4.31 to 3.72 eV, while poplar lignin had a considerable content of chromophores and showed the best UV-blocking enhancement among these three assessing lignins. The enhancement of UV-blocking property was achieved without compromising the visible-light transparency, mechanical strength and thermal stability of the composite films even at 4% lignin loading. This work showed the high promise of integrating biomass residue conversion into lignocellulose biorefinery for a multi-production purpose.


Subject(s)
Lignin
2.
Appl Biochem Biotechnol ; 192(2): 415-431, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32394318

ABSTRACT

Three typical waste furniture boards, including fiberboard, chipboard, and blockboard, were pretreated with conventional hydrothermal method. The responses of chemical composition, physicochemical morphology, and performances of enzymatic hydrolysis were evaluated. Results indicated the almost complete hemicellulose removal at higher pretreatment temperatures, the enhanced crystallinity index, and disordered morphology of the pretreated substrates indicated that the hydrothermal pretreatment deconstructed these boards well. However, the very low enzymatic hydrolysis (< 8% after 72 h) of the pretreated substrates showed the poor biological conversion. Three hypotheses for the weakened enzymatic hydrolysis were investigated, and results indicated that the residual adhesives and their degraded fractions were mainly responsible for poor hydrolysis. When NaOH post-pretreatment was attempted, cellulose-glucose conversion of the hydrothermally pretreated fiberboard, chipboard and blockboard can be improved to 28.5%, 24.1%, and 37.5%. Herein, the process of NaOH hydrothermal pretreatment was integrated, by which the hydrolysis of pretreated fiberboard, chipboard and blockboard was greatly promoted to 47.1%, 37.3%, and 53.8%, suggesting a possible way to pretreat these unconventional recalcitrant biomasses.


Subject(s)
Enzymes/metabolism , Lignin/chemistry , Temperature , Waste Products , Biomass , Glucose/chemistry , Hydrolysis , Kinetics , Sodium Hydroxide/chemistry
3.
Environ Technol ; 41(3): 329-338, 2020 Jan.
Article in English | MEDLINE | ID: mdl-29993344

ABSTRACT

Tea trees (Camellia sinensis) can take in fluorine from soil and the content of fluorine in tea increases with maturity, leading to high content of fluoride in tea leaves and tea products. Long-term consumption of high fluoride tea products could result in chronic fluoride intoxication. Confining the fluoride in the earth with absorbents to reduce the fluoride accumulation of the tea trees during the growth period which could radically control the fluoride level in tea product. Humic acid (HA), a kind of organic matter in the earth was used as raw material to prepare adsorbent aluminum humate (HAA) by aluminum modification. The HAA absorbent presented excellent absorption performance to the fluoride in a wide pH range (4-10), and the maximum adsorptive capacity can reach to 62.5 mg/g. The absorption isotherm demonstrated the adsorption of fluoride was the monomolecular adsorption and the absorption was in accordance with the pseudo-second order kinetic equation. Fluoride content in real soil solution decreased significantly by 53.03% by using the HAA absorbent. The utilization of HAA adsorbent in the culture and field plots experiments also obviously adsorb the soluble fluoride in solution and soil, which could significantly suppress the fluoride accumulation in tea leaves. In September, the fluoride accumulation in tea leaves has been reduced 74.29% in the field plots experiments.


Subject(s)
Aluminum , Fluorides , Adsorption , Plant Leaves , Tea
4.
Sci Total Environ ; 701: 134363, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31706211

ABSTRACT

Heavy metals (e.g., arsenic (As)) and tetracycline (TC) usually coexist in wastewater from livestock farm, whereas the co-adsorption behaviours and mechanisms of As(V) and TC were not well-known. This study investigated the adsorption and co-adsorption of As(V) and TC by a novel yttrium-immobilized-graphene oxide-alginate hydrogel (Y-GO-SA) to explore the adsorption behaviours and mechanisms. The adsorption of As(V) and TC was pH-dependent. The maximum adsorption capacities under the studied concentrations were 273.39 mg/g for As(V), and 477.9 mg/g for TC, respectively, which are much higher than many other reported adsorbents. Furthermore, As(V) adsorption was due to ion exchange between hydroxyl groups and H2AsO42- groups and H-bonds formed with O-containing groups on Y-GO-SA, and the adsorption of TC by Y-GO-SA was mainly ascribed to electrostatic interaction, H-bonds, π - π EDA interaction, n-π EDA interaction, and cation-bonding bridge effects. The co-adsorption of As(V) and TC in binary system indicated that the presence of TC obviously suppressed the adsorption of As(V) due to the competition for active sites, whereas the effect of presence of As(V) on adsorption of TC can be negligible due to the balance contributions from its contrary effects, i.e. enhancement (anion-π interaction) and reduction (competition for Y ions) in TC adsorption. Finally, the hydrogels performed well in the treatment of livestock farm waste water. It can be anticipated that the prepared 3D hydrogel can be used as a powerful adsorbent in the practical application of waste water treatment, owing to its easy separation, high adsorption and good reusability.


Subject(s)
Arsenic/chemistry , Graphite/chemistry , Tetracycline/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogels , Kinetics , Waste Disposal, Fluid , Wastewater/chemistry
5.
Polymers (Basel) ; 11(9)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31492029

ABSTRACT

Although recent work has shown natural lignin products are promising to fabricate various polymer based functional composites, high-value applications were challenged by their structural complexity and inhomogeneity. This work specially assessed the potential of four technical lignins for cellulose based functional films production. These four technical lignins were obtained by emerging pretreatment systems, i.e., lactic acid-betaine deep eutectic solvent (DES), ethanol organosolv, soda/anthraquinone (Soda/AQ) and the sodium salicylate hydrotrope, and their phenolic substructures were comparatively identified by prevalent 31P NMR technique. The influence of lignin chemical structure on the antioxidant potential and UV-shielding performance of the prepared cellulose/technical lignin composite films were assessed. Results showed severe organosolv and soda/AQ pretreatment produced technical lignins with higher total phenolic hydroxyl groups (3.37 and 3.23 mmol g-1 respectively), which also exhibited higher antioxidant activities. The composite films could effectively block the ultraviolet lights especially for UVB region (ultraviolet B, 280-315 nm) at only 5 wt.% lignin content. The contribution of lignin phenolic substructures to both antioxidant activity and UV-shielding property from high to low was syringyl > guaiacyl > p-hydroxyphenyl phenolic hydroxyl groups. This work provided some useful information that could facilitate upstream lignin extraction or downstream value-added applications.

6.
Toxicol In Vitro ; 58: 13-25, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30878698

ABSTRACT

Cancer is a leading cause of human mortality around the globe. In this study, mechanism-based SAR (Structure-Activity Relationship) was employed to investigate the carcinogenicity of aromatic amines and nitroaromatics based on CPDB. Principal component analysis and cluster analysis were used to construct the SAR model. Principle component analysis generated three principal components from 12 mechanism-based descriptors. The extracted principal components were later used for cluster analysis, which divided the selected 55 chemicals into six clusters. The three principal components were proposed to describe the "transport", "reactivity" and "electrophilicity" properties of the chemicals. Cluster analysis indicated that the relevant "transport" properties positively correlated with the carcinogenic potential and were contributing factors in determining the carcinogenicity of the studied chemicals. The mechanism-based SAR analysis suggested the electron donating groups, electron withdrawing groups and planarity are significant factors in determining the carcinogenic potency for studied aromatic compounds. The present study may provide insights into the relationship between the three proposed properties and the carcinogenesis of aromatic amines and nitroaromatics.


Subject(s)
Amines/toxicity , Carcinogens/toxicity , Hydrocarbons, Aromatic/toxicity , Nitro Compounds/toxicity , Amines/chemistry , Animals , Carcinogens/chemistry , Cluster Analysis , Hydrocarbons, Aromatic/chemistry , Neoplasms/chemically induced , Nitro Compounds/chemistry , Principal Component Analysis , Rats , Structure-Activity Relationship
7.
J Colloid Interface Sci ; 536: 710-721, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30408691

ABSTRACT

In this study, a series of in situ-generated yttrium-based nanoparticle (NP)/polyethersulfone (PES) composite adsorptive membranes were prepared by the phase inversion method for the first time. The Y(NO3)3·6H2O as precursor, uniformly dispersed at the molecular level in casting solution, reacted with OH- in a coagulation bath and ambient CO2 during the phase inversion process. The Y(CO3)0.5(OH)2 NPs were formed in situ and distributed homogeneously in a PES matrix, which was confirmed by X-ray photoelectron spectroscopy (XPS) and Energy Dispersive X-Ray Spectroscopy (EDS) results. The compatibility of the nanocomposite membranes was improved by an in situ preparation method. With the increase in content of Y-based NPs in composite membranes, the surface hydrophilicity and water permeability first increased from M1 to M2, and then slightly decreased from M3 to M5, which was mainly related to membrane structure. From M1 to M5, the demixing way changed from instantaneous demixing to delayed demixing process as a result of thermodynamic enhancement and viscosity hindrance in the phase inversion process. A higher demixing rate led to a structure with large finger-like macro-voids, i.e., M1, whereas a lower demixing rate caused the suppression of finger-like macro-voids, i.e., M5. More importantly, the adsorption study indicated that the nanocomposite adsorptive membranes were stable in the treatment of fluoride-containing water, with no leakage of Y-based NPs from membrane matrix to solution. It is expected that the in situ preparation technique could be used to produce next-generation nanocomposite adsorptive membranes with improved comprehensive properties for application in water treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...