Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 1): 126577, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37648132

ABSTRACT

Spider venom is a large pharmacological repertoire of different bioactive peptide toxins. However, obtaining crude venom from some spiders is challenging. Thus, studying individual toxins through venom purification is a daunting task. In this study, we constructed the cDNA library and transcriptomic sequencing from the Macrothele palpator venom glands. Subsequently, 718 high-quality expressed sequence tags (ESTs) were identified, and grouped into three categories, including 449 toxin-like (62.53 %), 136 cellular component (18.94 %) and 133 non-matched (18.52 %) based on the gene function annotation. Additionally, 112 non-redundant toxin-like peptides were classified into 13 families (families A-M) based on their sequence homology and cysteine framework. Bioinformatics analysis revealed a high sequence similarity between families A-J and the toxins from Macrothele gigas in the NR database. In contrast, families K-M had a generally low sequence homology with known spider peptide toxins and unpredictable biological functions. Taken together, this study adds many new members to the spider toxin superfamily and provides a basis for identifying various potential biological tools in M. palpator venom.


Subject(s)
Spider Venoms , Spiders , Humans , Animals , Peptides/genetics , Gene Expression Profiling , Gene Library , Spider Venoms/genetics , Expressed Sequence Tags , Spiders/genetics
2.
Front Bioeng Biotechnol ; 8: 617585, 2020.
Article in English | MEDLINE | ID: mdl-33324628

ABSTRACT

Gelatin methacryloyl (GelMA) has been widely used in bone engineering. It can also be filled into the calvarial defects with irregular shape. However, lack of osteoinductive capacity limits its potential as a candidate repair material for calvarial defects. In this study, we developed an injectable magnesium-zinc alloy containing hydrogel complex (Mg-IHC), in which the alloy was fabricated in an atomization process and had small sphere, regular shape, and good fluidity. Mg-IHC can be injected and plastically shaped. After cross-linking, it contents the elastic modulus similar to GelMA, and has inner holes suitable for nutrient transportation. Furthermore, Mg-IHC showed promising biocompatibility according to our evaluations of its cell adhesion, growth status, and proliferating activity. The results of alkaline phosphatase (ALP) activity, ALP staining, alizarin red staining, and real-time polymerase chain reaction (PCR) further indicated that Mg-IHC could significantly promote the osteogenic differentiation of MC3T3-E1 cells and upregulate the genetic expression of collagen I (COL-I), osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2). Finally, after applied to a mouse model of critical-sized calvarial defect, Mg-IHC remarkably enhanced bone formation at the defect site. All of these results suggest that Mg-IHC can promote bone regeneration and can be potentially considered as a candidate for calvarial defect repairing.

3.
Medicine (Baltimore) ; 99(43): e22716, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33120767

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is the one that of the most common complications of diabetes mellitus (DM). Diabetic patients will experience a high mortality rate when DN progress to end-stage. So, it is extremely important to early treat DN. Although several interventions have been used to treat DN, a conclusive finding has not already been achieved. As one of the most common Chinese medicines, danhong injection (DHI) which has been shown to have various functions has also been prescribed to be as the alternative treatment option. However, no systematic review and meta-analysis has been conducted to objectively and comprehensively investigate its effectiveness and safety. Thus, we designed the current systematic review and meta-analysis to answer whether DHI can be preferably used to timely treat DN. METHODS: We will perform a systematic search to capture any potentially eligible studies in several electronic databases including PubMed, Cochrane library, Embase, China National Knowledgement Infrastructure (CNKI), Wanfang database, and Chinese sci-tech periodical full-text database (VIP) from their inception to August 31, 2020. We will assign 2 independent reviewers to select eligible studies, and assess the quality of included studies with Cochrane risk of bias assessment tool. We will perform all statistical analyses using RevMan 5.3 software. ETHICS AND DISSEMINATION: We will submit our findings to be taken into consideration for publication in a peer-reviewed academic journal. Meanwhile, we will also communicate our findings in important conferences. PROTOCOL REGISTRY: The protocol of this systematic review and meta-analysis has been registered at the International Plateform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) platform (https://inplasy.com/inplasy-2020-9-0005/, registry number: INPLASY202090005) and this protocol was funded through a protocol registry.


Subject(s)
Diabetic Nephropathies/drug therapy , Drugs, Chinese Herbal/administration & dosage , Meta-Analysis as Topic , Research Design , Systematic Reviews as Topic , Early Medical Intervention , Humans , Injections
SELECTION OF CITATIONS
SEARCH DETAIL
...