Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 118(13): 2413-8, 2014 Apr 03.
Article in English | MEDLINE | ID: mdl-24611876

ABSTRACT

The NH(a(1)Δ) + CO(X(1)Σ(+)) product channel for the photodissociation of HNCO at 201 nm was investigated using the sliced velocity map ion imaging technique with the detection of NH(a(1)Δ) products via (2 + 1) resonance enhanced multiphoton ionization (REMPI). Images were measured for the NH(a(1)Δ) rotational states in the ground and vibrational excited states (v = 0 and 1). Correlation between the NH(a(1)Δ) and CO rovibrational state distributions were determined from these images. Experimental results show that the vibrational distribution of the CO fragment in the NH(a(1)Δ) + CO(X(1)Σ(+)) channel peaks at v = 1. The negative anisotropy parameter measured for the NH(a(1)Δ) (v = 0 and 1|j) products indicates a direct dissociation process for the N-C bond cleavage in the S1 state. A bimodal CO rotational distribution was observed, suggesting that HNCO dissociates in the S1 state in two distinctive pathways.


Subject(s)
Carbon Monoxide/chemistry , Cyanates/chemistry , Hydrogen/chemistry , Nitrogen/chemistry , Photochemical Processes
2.
Phys Chem Chem Phys ; 14(7): 2468-74, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22249580

ABSTRACT

The vibrationally mediated photodissociation of CS(2)(+) cations via the A(2)Π(u)(ν(1),ν(2),0) state has been studied by means of the velocity map ion imaging technique. The measurements were made with a double resonance strategy. The CS(2)(+) cations were prepared by a (3 + 1) resonance enhanced multiphoton ionization method. The photo-fragment excitation spectrum of S(+) was recorded by scanning the photolysis laser via the A(2)Π(u)(ν(1),ν(2),0) state. By fixing the photolysis laser wavelength at the specific vibrational state, the (1 + 1) photodissociation images of S(+) photofragments from numerous vibrationally mediated states have been accumulated. The translational energy release spectra derived from the resulting images imply that the co-fragments, CS radicals, are both vibrationally and rotationally excited. The one-photon photodissociation without the vibrational state selection has also been performed. Comparing the vibrationally mediated photodissociation with one-photon photodissociation observations, clear evidence of vibrational state control of the photodissociation process is observed.

4.
J Chem Phys ; 134(11): 114309, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21428621

ABSTRACT

Dissociation dynamics of CS(2)(+) vibrationally mediated via its B̃(2)Σ(u)(+) state, was studied using the time-sliced velocity map imaging technique. The parent CS(2)(+) cation was prepared in its X̃(2)Π(g) ground state through a [3 + 1] resonance enhanced multiphoton ionization process, via the 4pσ(3)Π(u) intermediate Rydberg state of neutral CS(2) molecule at 483.14 nm. CS(2)(+)(X̃(2)Π(g)) was dissociated by a [1 + 1] photoexcitation mediated via the vibrationally selected B̃ state over a wavelength range of 267-283 nm. At these wavelengths the C̃(2)Σ(g)(+) and D̃(2)Σ(u)(+) states are excited, followed by numerous S(+) and CS(+) dissociation channels. The S(+) channels specified as three distinct regions were shown with vibrationally resolved structures, in contrast to the less-resolved structures being presented in the CS(+) channels. The average translational energy releases were obtained, and the S(+)∕CS(+) branching ratios with mode specificity were measured. Two types of dissociation mechanisms are proposed. One mechanism is the direct coupling of the C̃ and D̃ states with the repulsive satellite states leading to the fast photofragmentation. The other mechanism is the internal conversion of the C̃ and D̃ states to the B̃ state, followed by the slow fragmentation occurred via the coupling with the repulsive satellite states.

5.
J Chem Phys ; 132(15): 154306, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20423180

ABSTRACT

The photodissociation dynamics of formic acid have been studied using the velocity map ion imaging at the UV region. The measurements were made with resonance enhancement multiphoton ionization (REMPI) spectroscopy and dc slicing ion imaging. The OH REMPI spectrum from the photodissociation of formic acid at 244 nm has been recorded. The spectrum shows low rotational excitation (N

Subject(s)
Formates/chemistry , Photochemical Processes/radiation effects , Quantum Theory , Thermodynamics , Ultraviolet Rays
6.
J Chem Phys ; 129(7): 074301, 2008 Aug 21.
Article in English | MEDLINE | ID: mdl-19044761

ABSTRACT

The hydrogen atom abstraction reactions of CN (X (2)Sigma(+)) with alkanes have been studied using the crossed molecular beam technique with dc slice ion imaging at collision energies of 7.5 and 10.8 kcalmol. The product alkyl radical images were obtained via single photon ionization at 157 nm for the reactions of CN (X (2)Sigma(+)) with n-butane, n-pentane, n-hexane, and cyclohexane. From analysis of the images, we obtained the center-of-mass frame product angular distributions and translational energy distributions directly. The results indicate that the products are largely backscattered and that most of the available energy ( approximately 80%-85%) goes to the internal energy of the products. The reaction dynamics is discussed in light of recent kinetics data, theoretical calculations, and results for related halogen and oxygen atom reactions.


Subject(s)
Alkanes/chemistry , Nitriles/chemistry , Computer Simulation , Free Radicals/chemistry , Kinetics , Models, Chemical , Quantum Theory , Spectrum Analysis , Vibration
7.
J Chem Phys ; 128(13): 134301, 2008 Apr 07.
Article in English | MEDLINE | ID: mdl-18397058

ABSTRACT

We present a dc sliced ion imaging study of HCCO radical photodissociation to CH and CO at 230 nm. The measurements were made using a two-color reduced Doppler probe strategy. The CO rotational distribution was consistent with a Boltzmann distribution at 3500 K. Using the dc slice ion imaging approach, we obtained CO images for various rotational levels of CO (v=0). The results are largely consistent with earlier work, albeit with a significant 0.9 eV peak seen previously in the translational energy distributions absent in our state-selected imaging study.

8.
J Chem Phys ; 125(13): 133107, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029433

ABSTRACT

The hydrogen atom abstraction reaction of Cl (2P3/2) with ethane has been studied using the crossed molecular beam technique with dc slice imaging at collision energies from 3.2 to 10.4 kcal/mol. The products HCl (v,J) (v = 0, J = 0-5) were state-selectively detected using 2+1 resonance enhanced multiphoton ionization. The images were used to obtain the center-of-mass frame product angular distributions and translational energy release distributions. Two general features were found in all probed HCl quantum states at 6.7 kcal/mol collision energy, and these features have distinct translational energy release and angular distributions, as described for HCl (v = 0, J = 2) in a recent preliminary report [Li et al., J. Chem. Phys. 124, 011102 (2006)]. The results for HCl (v = 0, J = 2) at four collision energies were also compared to investigate the energy-dependent dynamics. We discuss the reaction in terms of a variety of models of polyatomic reaction dynamics. The dynamics of this well studied system are more complicated than can be accounted for by a single mechanism, and the results call for further theoretical and experimental investigations.

9.
Phys Chem Chem Phys ; 8(40): 4652-4, 2006 Oct 28.
Article in English | MEDLINE | ID: mdl-17047761

ABSTRACT

We demonstrate a hybrid Doppler-free/Doppler-sliced ion imaging approach that is well-suited for detection of H or D atoms. The method relies on 2 + 1 resonant ionization with identical, nearly counterpropagating beams that are coplanar but directed at a small angle relative to the detector face. This results in Doppler selection of the velocity component along the time of flight axis but Doppler-free detection in the plane perpendicular to this axis. The results show high signal level and excellent slicing ( approximately 5%), yielding velocity resolution completely determined by cation recoil in the ionization step.


Subject(s)
Hydrogen/analysis , Image Enhancement/methods , Ions , Pulsatile Flow/physiology , Doppler Effect , Lasers , Radiation, Ionizing
10.
J Chem Phys ; 125(12): 121101, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-17014157

ABSTRACT

We demonstrate a two-color reduced-Doppler probe for ion imaging that, in many applications, offers advantages over conventional 2+1 resonance-enhanced multiphoton ionization detection. Using counterpropagating beams of two different colors, one of which is broadband 266 nm, we achieve convenient and sensitive D atom detection without the need for Doppler scanning. We demonstrate the approach using 224 nm photodissociation of DBr. This method improves the sensitivity and signal-to-noise ratio and presents advantages and opportunities for use in the other systems.

11.
Phys Chem Chem Phys ; 8(25): 2950-7, 2006 Jul 07.
Article in English | MEDLINE | ID: mdl-16880907

ABSTRACT

High resolution kinetic energy release spectra were obtained for C(+) and O(+) from CO multiphoton ionization followed by dissociation of CO(+). The excitation was through the CO (B (1)Sigma(+)) state via resonant two-photon excitation around 230 nm. A total of 5 and 6 photons are found to contribute to the production of carbon and oxygen cations. DC slice and Megapixel ion imaging techniques were used to acquire high quality images. Major features in both O(+) and C(+) spectra are assigned to the dissociation of some specific vibrational levels of CO(+)(X (2)Sigma(+)). The angular distributions of C(+) and O(+) are very distinct and those of various features of C(+) are also different. A dramatic change of the angular distribution of C(+) from dissociation of CO(+)(X (2)Sigma(+), nu(+) = 1) is attributed to an accidental one-photon resonance between CO(+)(X (2)Sigma(+), nu(+) = 1) and CO(+)(B (2)Sigma(+), nu(+) = 0) and explained well by a theoretical model. Both kinetic energy release and angular distributions were used to reveal the underlying dynamics.


Subject(s)
Algorithms , Carbon Monoxide/chemistry , Carbon Monoxide/radiation effects , Models, Chemical , Models, Molecular , Spectrum Analysis/methods , Computer Simulation , Electrons , Light , Photochemistry/methods , Photons , Radiation, Ionizing
12.
J Chem Phys ; 124(1): 11102, 2006 Jan 07.
Article in English | MEDLINE | ID: mdl-16409017

ABSTRACT

We present state-resolved crossed beam scattering results for the reaction Cl+C2H6-->HCl+C2H5, obtained using direct current slice imaging. The HCl (v=0,J=2) image, recorded at a collision energy of 6.7+/-0.6 kcalmol, shows strongly coupled angular and translational energy distributions revealing features of the reaction not seen in previous studies. The overall distribution is mainly forward scattered with respect to the Cl beam, with a translational energy distribution peaking near the collision energy. However, there is a substantial backscattered contribution that is very different. It shows a sharp peak at 8.0 kcalmol, but extends to much lower energy, implying substantial internal excitation in the ethyl radical coproduct. These results provide new insight into the reaction, and they are considered in terms of alternative models of the dynamics. This work represents the first genuine crossed-beam study in which a product other than the methyl radical was detected with quantum state specificity, showing the promise of the approach generally for high resolution state-resolved reactive scattering.

13.
J Phys Chem A ; 109(17): 3921-5, 2005 May 05.
Article in English | MEDLINE | ID: mdl-16833710

ABSTRACT

The reactions of C2 (a 3pi(u)) radicals with a series of alcohols have been studied at about 6.5 Torr total pressure and room temperature using the pulsed laser photolysis/laser-induced fluorescence technique. The relative concentration of C2 (a 3pi(u)) radicals, which are generated via the photolysis of C2Cl4 with the focused output from the fourth harmonic of a Nd:YAG laser (266 nm), was monitored by laser-induced fluorescence (LIF) in the (0, 0) band of the C2 (d 3pi(g)<--a 3pi(u)) transition at 516.5 nm. Under pseudo-first-order conditions, we measured the time evolution of C2 (a 3pi(u)) and determined the rate constants for reactions of C2 (a 3pi(u)) with alcohols. The rate constants increase linearly with the number of C atoms in the alcohols. All of them are larger than those for reactions of C2 (a 3pi(u)) with alkanes (C1-C5). Based on the bond dissociation energy and linear free energy correlations, we believe the reactions of C2 (a 3pi(u)) with alcohols proceed via the mechanism of hydrogen abstraction. The experimental results show that the H-atom on the C-H bonds is activated at the presence of the OH substituent group in the alcohol molecule. The theoretical calculations for the reaction of C2 (a 3pi(u)) with methanol also support these hypotheses.

14.
J Chem Phys ; 120(5): 2225-9, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-15268361

ABSTRACT

The reactions of C2(a3Piu) radicals with a series of alkanes have been studied at room temperature and 6.5 torr total pressure using the pulsed laser photolysis/laser-induced fluorescence technique. C2(a3Piu) radicals were generated by photolysis of C2Cl4 with the focused output from the fourth harmonic of a Nd: YAG laser at 266 nm. The relative concentration of C2(a3Piu) radicals was monitored on the (0,0) band of the C2(d3Pig <-- a3Piu) transition at 516.5 nm by laser-induced fluorescence. From the analysis of the relative concentration-time behavior of C2(a3Piu) under pseudofirst-order conditions, the rate constants for the reactions of C2(a3Piu) with alkanes (C1-C8) were determined. The rate constant increases linearly with the increasing of the number of CH2 groups in the alkanes. The experimental results indicate that the reaction of C2(a3Piu) with small alkanes (C1-C8) follows the typical hydrogen abstraction process. Based on the correlation of the experimental results with the bond dissociation energy of the alkanes, the reactions of C2(a3Piu) with small alkanes likely proceed via the mechanism of hydrogen abstraction.

SELECTION OF CITATIONS
SEARCH DETAIL
...