Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 26(1)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38248196

ABSTRACT

Errors are common issues in quantum computing platforms, among which leakage is one of the most-challenging to address. This is because leakage, i.e., the loss of information stored in the computational subspace to undesired subspaces in a larger Hilbert space, is more difficult to detect and correct than errors that preserve the computational subspace. As a result, leakage presents a significant obstacle to the development of fault-tolerant quantum computation. In this paper, we propose an efficient and accurate benchmarking framework called leakage randomized benchmarking (LRB), for measuring leakage rates on multi-qubit quantum systems. Our approach is more insensitive to state preparation and measurement (SPAM) noise than existing leakage benchmarking protocols, requires fewer assumptions about the gate set itself, and can be used to benchmark multi-qubit leakages, which has not been achieved previously. We also extended the LRB protocol to an interleaved variant called interleaved LRB (iLRB), which can benchmark the average leakage rate of generic n-site quantum gates with reasonable noise assumptions. We demonstrate the iLRB protocol on benchmarking generic two-qubit gates realized using flux tuning and analyzed the behavior of iLRB under corresponding leakage models. Our numerical experiments showed good agreement with the theoretical estimations, indicating the feasibility of both the LRB and iLRB protocols.

2.
Phys Rev Lett ; 130(7): 070601, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36867808

ABSTRACT

A quantum instruction set is where quantum hardware and software meet. We develop characterization and compilation techniques for non-Clifford gates to accurately evaluate its designs. Applying these techniques to our fluxonium processor, we show that replacing the iSWAP gate by its square root SQiSW leads to a significant performance boost at almost no cost. More precisely, on SQiSW we measure a gate fidelity of up to 99.72% and averaging at 99.31%, and realize Haar random two-qubit gates with an average fidelity of 96.38%. This is an average error reduction of 41% for the former and a 50% reduction for the latter compared to using iSWAP on the same processor.

3.
Phys Rev Lett ; 129(1): 010502, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35841558

ABSTRACT

Superconducting qubits provide a promising path toward building large-scale quantum computers. The simple and robust transmon qubit has been the leading platform, achieving multiple milestones. However, fault-tolerant quantum computing calls for qubit operations at error rates significantly lower than those exhibited in the state of the art. Consequently, alternative superconducting qubits with better error protection have attracted increasing interest. Among them, fluxonium is a particularly promising candidate, featuring large anharmonicity and long coherence times. Here, we engineer a fluxonium-based quantum processor that integrates high qubit coherence, fast frequency tunability, and individual-qubit addressability for reset, readout, and gates. With simple and fast gate schemes, we achieve an average single-qubit gate fidelity of 99.97% and a two-qubit gate fidelity of up to 99.72%. This performance is comparable to the highest values reported in the literature of superconducting circuits. Thus our work, within the realm of superconducting qubits, reveals an alternative qubit platform that is competitive with the transmon system.

4.
Nat Comput Sci ; 1(9): 578-587, 2021 Sep.
Article in English | MEDLINE | ID: mdl-38217127

ABSTRACT

We develop an algorithmic framework for contracting tensor networks and demonstrate its power by classically simulating quantum computation of sizes previously deemed out of reach. Our main contribution, index slicing, is a method that efficiently parallelizes the contraction by breaking it down into much smaller and identically structured subtasks, which can then be executed in parallel without dependencies. We benchmark our algorithm on a class of random quantum circuits, achieving greater than 105 times acceleration over the original estimate of the simulation cost. We then demonstrate applications of the simulation framework for aiding the development of quantum algorithms and quantum error correction. As tensor networks are widely used in computational science, our simulation framework may find further applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...