Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Biol ; 7(1): 22, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38182647

ABSTRACT

The androgen receptor (AR) plays an important role in male-dominant hepatocellular carcinoma, and specific acquired somatic mutations of AR have been observed in HCC patients. Our previous research have established the role of AR wild type as one of the key oncogenes in hepatocarcinogenesis. However, the role of hepatic acquired somatic mutations of AR remains unknown. In this study, we identify two crucial acquired somatic mutations, Q62L and E81Q, situated close to the N-terminal activation function domain-1 of AR. These mutations lead to constitutive activation of AR, both independently and synergistically with androgens, making them potent driver oncogene mutations. Mechanistically, these N-terminal AR somatic mutations enhance de novo lipogenesis by activating sterol regulatory element-binding protein-1 and promote glycogen accumulation through glycogen phosphorylase, brain form, thereby disrupting the AMPK pathway and contributing to tumorigenesis. Moreover, the AR mutations show sensitivity to the AMPK activator A769662. Overall, this study establishes the role of these N- terminal hepatic mutations of AR as highly malignant oncogenic drivers in hepatocarcinogenesis and highlights their potential as therapeutic targets for patients harboring these somatic mutations.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Receptors, Androgen , Humans , Male , AMP-Activated Protein Kinases , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Mutation , Receptors, Androgen/genetics
2.
Thorac Cancer ; 13(6): 858-869, 2022 03.
Article in English | MEDLINE | ID: mdl-35142041

ABSTRACT

BACKGROUND: Accumulating studies have suggested the airway microbiota in lung cancer patients is significantly different from that of healthy controls. However, little is known about the relationship between airway microbiota and important clinical parameters of lung cancer. In this study, we aimed to explore the association between sputum microbiota and lung cancer stage, lymph node metastasis, intrathoracic metastasis, and epidermal growth factor receptor (EGFR) gene mutation. METHODS: The microbiota of sputum samples from 85 newly-diagnosed NSCLC patients were sequenced via 16S rRNA sequencing of the V3-V4 region. Sequencing reads were filtered using QIIME2 and clustered against UPARSE. RESULTS: Alpha- and ß-diversity was significantly different between patients in stages I to II (early stage, ES) and patients in stages III to IV (advanced stage, AS). Linear discriminant analysis Effect Size (LEfSe) identified that genera Granulicatella and Actinobacillus were significantly enriched in ES, and the genus Actinomyces was significantly enriched in AS. PICRUSt2 identified that the NAD salvage pathway was significantly enriched in AS, which was positively associated with Granulicatella. Patients with intrathoracic metastasis were associated with increased genus Peptostreptococcus and incomplete reductive TCA cycle, which was associated with increased Peptostreptococcus. Genera Parvimonas, Pseudomona and L-valine biosynthesis were positively associated with lymph node metastasis. L-valine biosynthesis was related with increased Pseudomona. Finally, the genus Parvimonas was significantly enriched in adenocarcinoma patients with EGFR mutation. CONCLUSION: The taxonomy structure differed between different lung cancer stages. The tumor stage, intrathoracic metastasis, lymph node metastasis, and EGFR mutation were associated with alteration of specific airway genera and metabolic function of sputum microbiota.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Microbiota , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Genes, erbB-1 , Humans , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , RNA, Ribosomal, 16S/genetics
3.
Oncotarget ; 8(43): 75381-75388, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-29088873

ABSTRACT

BACKGROUND: Inflammation may play an important role in cancer progression, and a higher systemic immune-inflammation index (SII) has been reported to be a poor prognostic marker in several malignancies. However, the results of published studies are inconsistent. MATERIALS AND METHODS: A systematic review of databases was conducted to search for publications regarding the association between blood SII and clinical outcome in solid tumors with a date up to February 12, 2017. The primary outcome was overall survival (OS) and the secondary outcomes were progression-free survival (PFS) and cancer-specific survival (CSS). Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were used to assess the strength of the association between blood SII and clinical outcome in solid tumors. RESULTS: A total of 15 articles were included in the analysis. Overall, systemic immune-inflammation index greater than the cutoff predicted poor overall survival (HR = 1.55, 95% CI = 1.27-1.88; P < 0.001). Subgroup analyses revealed that high systemic immune-inflammation index indicated a worse overall survival in hepatocellular carcinoma (P < 0.001), urinary cancers (P < 0.001), gastrointestinal tract cancers (P = 0.02), small cell lung cancer (P < 0.05) and acral melanoma (P < 0.001). Hazard ratio for systemic immune-inflammation index greater than the cutoff for cancer-specific survival was 1.44 (P < 0.05). CONCLUSIONS: Elevated systemic immune-inflammation index is associated with a worse overall survival in many solid tumors. The systemic-inflammation index can act as a powerful prognostic indicator of poor outcome in patients with solid tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...