Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Small ; 20(5): e2306646, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37759391

ABSTRACT

Resolution control and expansibility have always been challenges to the fabrication of structural color materials. Here, a facile strategy to print cholesteric liquid crystal elastomers (CLCEs) into complex structural color patterns with variable resolution and enhanced expansibility is reported. A volatile solvent is introduced into the synthesized CLC oligomers, modifying its rheological properties and allowing direct-ink-writing (DIW) under mild conditions. The combination of printing shear flow and anisotropic deswelling of ink drives the CLC molecules into an ordered cholesteric arrangement. The authors meticulously investigate the influence of printing parameters to achieve resolution control over a wide range, allowing for the printing of multi-sized 1D or 2D patterns with constant quality. Furthermore, such solvent-cast direct-ink-writing (DIW) strategy is highly expandable and can be integrated easily into the DIW of bionic robots. Multi-responsive bionic butterfly and flower are printed with biomimetic in both locomotion and coloration. Such designs dramatically reduced the processing difficulty of precise full-color printing and expanded the capability of structural color materials to collaborate with other systems.

2.
J Agric Food Chem ; 69(40): 11743-11752, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34583509

ABSTRACT

Mycotoxins are toxic contaminants in foods and feeds that are naturally occurring and largely unavoidable. Determining their contents in these products is essential to protect humans from harm. Immunoassays of mycotoxins have been well-established because they are fast, sensitive, simple, and cost-effective. However, a major limitation of immunoassays is the requirement of toxic mycotoxins as competing antigens, standards, or competing tracers. Mimotopes are peptides or proteins that can specifically bind to antibodies and compete with analytes for binding sites by mimicking antigenic epitopes. They can be employed as substitutes for competing antigens, standards, or competing tracers to avoid use of mycotoxins. This review summarizes the production and functionalization of the two main kinds of mimotopes, mimic peptides and anti-idiotypic antibodies (Ab2), and their applications in rapid analysis of mycotoxins.


Subject(s)
Mycotoxins , Antigens , Epitopes , Humans , Immunoassay , Peptides
3.
J Craniofac Surg ; 31(8): 2188-2192, 2020.
Article in English | MEDLINE | ID: mdl-33136852

ABSTRACT

Posterior pharyngeal flap palatoplasty is used to restore the function of velopharyngeal (VP) closure, after which 2 ports remain between the nasal and oral cavity. The authors hypothesized that the airflow dynamics of the upper airway is different in PPF patients compared to health subjects, who only has 1 movable port. Twenty adults who have multislice spiral computed tomography scan were included in this study. Two cylinders (radius, 2.00 mm; height, 4.5 mm) were used to recapitulate the 2-port VP structure after PPF palatoplasty. The areas of ports were modified by changing the radius of 2 cylinders. Real-time computational fluid dynamics simulation was used to capture the airflow velocity and pressures through the 2 ports. The airflow velocity and pressure of upper airway were recorded as the total areas of 2 VP ports increased. The total orifice areas of the 2-port VP closure for 4 VP conditions, including adequate closure, adequate/borderline closure, borderline/inadequate closure, and inadequate closure, were demonstrated. Significant differences between the 2-port VP function for demonstrating PPF reconstruction and the 1-port VP function were found. Airflow dynamics is dependent on the VP structure. The 2-port airflow model for mimicking VP closure after PPF palatoplasty demonstrated airflow characteristics that were significantly different from the 1-port model in normal VP closure.


Subject(s)
Pharynx/physiopathology , Adult , Cleft Palate/surgery , Computer Simulation , Female , Humans , Hydrodynamics , Male , Nose/surgery , Pharynx/surgery , Plastic Surgery Procedures , Tomography, Spiral Computed , Young Adult
4.
Adv Mater ; 32(46): e2003537, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33053221

ABSTRACT

Recent advances in CRISPR present attractive genome-editing toolsets for therapeutic strategies at the genetic level. Here, a liposome-coated mesoporous silica nanoparticle (lipoMSN) is reported as an effective CRISPR delivery system for multiplex gene-editing in the liver. The MSN provides efficient loading of Cas9 plasmid as well as Cas9 protein/guide RNA ribonucleoprotein complex (RNP), while liposome-coating offers improved serum stability and enhanced cell uptake. Hypothesizing that loss-of-function mutation in the lipid-metabolism-related genes pcsk9, apoc3, and angptl3 would improve cardiovascular health by lowering blood cholesterol and triglycerides, the lipoMSN is used to deliver a combination of RNPs targeting these genes. When targeting a single gene, the lipoMSN achieved a 54% gene-editing efficiency, besting the state-of-art Lipofectamine CRISPRMax. For multiplexing, lipoMSN maintained significant gene-editing at each gene target despite reduced dosage of target-specific RNP. By delivering combinations of targeting RNPs in the same nanoparticle, synergistic effects on lipid metabolism are observed in vitro and vivo. These effects, such as a 50% decrease in serum cholesterol after 4 weeks of post-treatment with lipoMSN carrying both pcsk9 and angptl3-targeted RNPs, could not be reached with a single gene-editing approach. Taken together, this lipoMSN represents a versatile platform for the development of efficient, combinatorial gene-editing therapeutics.


Subject(s)
Drug Carriers/chemistry , Gene Editing , Liver/metabolism , Angiopoietin-Like Protein 3 , Angiopoietin-like Proteins/genetics , CRISPR-Cas Systems/genetics , Gene Transfer Techniques , Humans , Lipids/chemistry , Nanoparticles/chemistry , Proprotein Convertase 9/genetics
5.
Adv Funct Mater ; 30(44)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33390875

ABSTRACT

The burden of liver diseases is increasing worldwide, accounting for two million deaths annually. In the past decade, tremendous progress has been made in the basic and translational research of liver tissue engineering. Liver microtissues are small, three-dimensional hepatocyte cultures that recapitulate liver physiology and have been used in biomedical research and regenerative medicine. This review summarizes recent advances, challenges, and future directions in liver microtissue research. Cellular engineering approaches are used to sustain primary hepatocytes or produce hepatocytes derived from pluripotent stem cells and other adult tissues. Three-dimensional microtissues are generated by scaffold-free assembly or scaffold-assisted methods such as macroencapsulation, droplet microfluidics, and bioprinting. Optimization of the hepatic microenvironment entails incorporating the appropriate cell composition for enhanced cell-cell interactions and niche-specific signals, and creating scaffolds with desired chemical, mechanical and physical properties. Perfusion-based culture systems such as bioreactors and microfluidic systems are used to achieve efficient exchange of nutrients and soluble factors. Taken together, systematic optimization of liver microtissues is a multidisciplinary effort focused on creating liver cultures and on-chip models with greater structural complexity and physiological relevance for use in liver disease research, therapeutic development, and regenerative medicine.

6.
Ann Otol Rhinol Laryngol ; 129(2): 157-163, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31569953

ABSTRACT

OBJECTIVE: Velopharyngeal (VP) closure has high impact on the quality of life, especially in patients with cleft palate. For better understanding the VP closure, it is important to understand the airflow dynamics of different closure patterns, including circular, coronal, sagittal, and circular with a Passavant's ridge. The purpose of this study was to demonstrate the airflow characteristics of different velopharyngeal closure patterns. METHODS: Sixteen adults with no notable upper airway abnormality who needed multislice spiral computed tomography scans as part of their clinical care. Airways were reconstructed. A cylinder and a cuboid were used to replace the VP port in three models of VP port patterns. Flow simulations were carried using computational fluid dynamics. Airflow pressures in the VP orifice, oral cavity and nasal cavity, as well as airflow velocity through the velopharyngeal orifice, were calculated. RESULTS: The airflow dynamics at the velopharynx were different among different velopharyngeal patterns as the area of the velopharyngeal port increased from 0 to 25 mm2. The orifice areas of different closure conditions in four velopharyngeal closure patterns were significantly different. The maximal orifice area for adequate velopharyngeal closure was 7.57 mm2 in the coronal pattern and 6.21 mm2 in the sagittal pattern. CONCLUSIONS: Airflow dynamics of the velopharynx were correlated to the velopharyngeal closure patterns. Different closure patterns had different largest permitted orifice areas for getting the appropriate oral pressures for normal speech.


Subject(s)
Pharynx/physiopathology , Velopharyngeal Insufficiency/physiopathology , Adult , Air , Female , Humans , Hydrodynamics , Male , Software , Young Adult
7.
Ann Otol Rhinol Laryngol ; 128(8): 742-748, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30957524

ABSTRACT

OBJECTIVES: Competent velopharyngeal (VP) function is the basis for normal speech. Understanding how VP structure influences the airflow during speech details is essential to the surgical improvement of pharyngoplasty. In this study, we aimed to illuminate the airflow features corresponding to various VP closure states using computed dynamic simulations. METHODS: Three-dimensional models of the upper airways were established based on computed tomography of 8 volunteers. The velopharyngeal port was simulated by a cylinder. Computational fluid dynamics simulations were applied to illustrate the correlation between the VP port size and the airflow parameters, including the flow velocity, pressure in the velopharyngeal port, as well as the pressure in oral and nasal cavity. RESULTS: The airflow dynamics at the velopharynx were maintained in the same velopharyngeal pattern as the area of the velopharyngeal port increased from 0 to 25 mm2. A total of 5 airflow patterns with distinct features were captured, corresponding to adequate closure, adequate/borderline closure (Class I and II), borderline/inadequate closure, and inadequate closure. The maximal orifice area that could be tolerated for adequate VP closure was determined to be 2.01 mm2. CONCLUSION: Different VP functions are of characteristic airflow dynamic features. Computational fluid dynamic simulation is of application potential in individualized VP surgery planning.


Subject(s)
Hydrodynamics , Pulmonary Ventilation/physiology , Speech/physiology , Velopharyngeal Sphincter/physiology , Adult , Computer Simulation , Female , Humans , Male , Palate, Soft/diagnostic imaging , Palate, Soft/physiology , Reference Values , Tomography, Spiral Computed , Velopharyngeal Sphincter/diagnostic imaging , Young Adult
8.
Nano Lett ; 19(3): 1701-1705, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30773888

ABSTRACT

Mesenchymal stem cell (MSC) has been increasingly applied to cancer therapy because of its tumor-tropic capability. However, short retention at target tissue and limited payload option hinder the progress of MSC-based cancer therapy. Herein, we proposed a hybrid spheroid/nanomedicine system, comprising MSC spheroid entrapping drug-loaded nanocomposite, to address these limitations. Spheroid formulation enhanced MSC's tumor tropism and facilitated loading of different types of therapeutic payloads. This system acted as an active drug delivery platform seeking and specifically targeting glioblastoma cells. It enabled effective delivery of combinational protein and chemotherapeutic drugs by engineered MSC and nanocomposite, respectively. In an in vivo migration model, the hybrid spheroid showed higher nanocomposite retention in the tumor tissue compared with the single MSC approach, leading to enhanced tumor inhibition in a heterotopic glioblastoma murine model. Taken together, this system integrates the merits of cell- and nanoparticle- mediated drug delivery with the tumor-homing characteristics of MSC to advance targeted combinational cancer therapy.


Subject(s)
Drug Delivery Systems , Glioblastoma/drug therapy , Mesenchymal Stem Cells/chemistry , Spheroids, Cellular/transplantation , Cell Engineering/trends , Cell Movement/drug effects , Combined Modality Therapy , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mesenchymal Stem Cells/cytology , Nanomedicine/trends , Spheroids, Cellular/chemistry , Viral Tropism/drug effects
9.
Adv Sci (Weinh) ; 5(7): 1700540, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30027026

ABSTRACT

CRISPR/Cas9 technology enables targeted gene editing; yet, the efficiency and specificity remain unsatisfactory, particularly for the nonvirally delivered, plasmid-based CRISPR/Cas9 system. To tackle this, a self-assembled micelle is developed and evaluated for human papillomavirus (HPV) E7 oncogene disruption. The optimized micelle enables effective delivery of Cas9 plasmid with a transient transgene expression profile, benefiting the specificity of Cas9 recognition. Furthermore, the feasibility of using the micelle is explored for another nucleic acid-guided nuclease system, Natronobacterium gregoryi Argonaute (NgAgo). Both systems are tested in vitro and in vivo to evaluate their therapeutic potential. Cas9-mediated E7 knockout leads to significant inhibition of HPV-induced cancerous activity both in vitro and in vivo, while NgAgo does not show significant E7 inhibition on the xenograft mouse model. Collectively, this micelle represents an efficient delivery system for nonviral gene editing, adding to the armamentarium of gene editing tools to advance safe and effective precision medicine-based therapeutics.

10.
Proc Natl Acad Sci U S A ; 115(19): 4903-4908, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29686087

ABSTRACT

Effective and safe delivery of the CRISPR/Cas9 gene-editing elements remains a challenge. Here we report the development of PEGylated nanoparticles (named P-HNPs) based on the cationic α-helical polypeptide poly(γ-4-((2-(piperidin-1-yl)ethyl)aminomethyl)benzyl-l-glutamate) for the delivery of Cas9 expression plasmid and sgRNA to various cell types and gene-editing scenarios. The cell-penetrating α-helical polypeptide enhanced cellular uptake and promoted escape of pCas9 and/or sgRNA from the endosome and transport into the nucleus. The colloidally stable P-HNPs achieved a Cas9 transfection efficiency up to 60% and sgRNA uptake efficiency of 67.4%, representing an improvement over existing polycation-based gene delivery systems. After performing single or multiplex gene editing with an efficiency up to 47.3% in vitro, we demonstrated that P-HNPs delivering Cas9 plasmid/sgRNA targeting the polo-like kinase 1 (Plk1) gene achieved 35% gene deletion in HeLa tumor tissue to reduce the Plk1 protein level by 66.7%, thereby suppressing the tumor growth by >71% and prolonging the animal survival rate to 60% within 60 days. Capable of delivering Cas9 plasmids to various cell types to achieve multiplex gene knock-out, gene knock-in, and gene activation in vitro and in vivo, the P-HNP system offers a versatile gene-editing platform for biological research and therapeutic applications.


Subject(s)
CRISPR-Cas Systems , Cell-Penetrating Peptides , Gene Editing/methods , Gene Transfer Techniques , Nanoparticles/chemistry , Plasmids , Animals , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , HEK293 Cells , HeLa Cells , Humans , K562 Cells , Mice , NIH 3T3 Cells , Plasmids/chemistry , Plasmids/genetics , Plasmids/pharmacology
11.
Cell Mol Bioeng ; 8(1): 137-150, 2015.
Article in English | MEDLINE | ID: mdl-25798204

ABSTRACT

During metastasis, circulating tumor cells migrate away from a primary tumor via the blood circulation to form secondary tumors in distant organs. Mounting evidence from clinical observations indicates that the number of circulating tumor cells (CTCs) in the blood correlates with the progression of solid tumors before and during chemotherapy. Beyond the well-established role of CTCs as a fluid biopsy, however, the field of targeting CTCs for the prevention or reduction of metastases has just emerged. Conventional cancer therapeutics have a relatively short circulation time in the blood which may render the killing of CTCs inefficient due to reduced exposure of CTCs to drugs. Nevertheless, over the past few decades, the development of nanoparticles and nanoformulations to improve the half-life and release profile of drugs in circulation has rejuvenated certain traditional medicines in the emerging field of CTC neutralization. This review focuses on how the principles of nanomedicine may be applied to target CTCs. Moreover, inspired by the interactions between CTCs and host cells in the blood circulation, novel biomimetic approaches for targeted drug delivery are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...