Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38200890

ABSTRACT

The overpopulation of feral pigeons in Hong Kong has significantly disrupted the urban ecosystem, highlighting the urgent need for effective strategies to control their population. In general, control measures should be implemented and re-evaluated periodically following accurate estimations of the feral pigeon population in the concerned regions, which, however, is very difficult in urban environments due to the concealment and mobility of pigeons within complex building structures. With the advances in deep learning, computer vision can be a promising tool for pigeon monitoring and population estimation but has not been well investigated so far. Therefore, we propose an improved deep learning model (Swin-Mask R-CNN with SAHI) for feral pigeon detection. Our model consists of three parts. Firstly, the Swin Transformer network (STN) extracts deep feature information. Secondly, the Feature Pyramid Network (FPN) fuses multi-scale features to learn at different scales. Lastly, the model's three head branches are responsible for classification, best bounding box prediction, and segmentation. During the prediction phase, we utilize a Slicing-Aided Hyper Inference (SAHI) tool to focus on the feature information of small feral pigeon targets. Experiments were conducted on a feral pigeon dataset to evaluate model performance. The results reveal that our model achieves excellent recognition performance for feral pigeons.

2.
Animals (Basel) ; 12(16)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36009732

ABSTRACT

Deep learning dominates automated animal activity recognition (AAR) tasks due to high performance on large-scale datasets. However, constructing centralised data across diverse farms raises data privacy issues. Federated learning (FL) provides a distributed learning solution to train a shared model by coordinating multiple farms (clients) without sharing their private data, whereas directly applying FL to AAR tasks often faces two challenges: client-drift during local training and local gradient conflicts during global aggregation. In this study, we develop a novel FL framework called FedAAR to achieve AAR with wearable sensors. Specifically, we devise a prototype-guided local update module to alleviate the client-drift issue, which introduces a global prototype as shared knowledge to force clients to learn consistent features. To reduce gradient conflicts between clients, we design a gradient-refinement-based aggregation module to eliminate conflicting components between local gradients during global aggregation, thereby improving agreement between clients. Experiments are conducted on a public dataset to verify FedAAR's effectiveness, which consists of 87,621 two-second accelerometer and gyroscope data. The results demonstrate that FedAAR outperforms the state-of-the-art, on precision (75.23%), recall (75.17%), F1-score (74.70%), and accuracy (88.88%), respectively. The ablation experiments show FedAAR's robustness against various factors (i.e., data sizes, communication frequency, and client numbers).

3.
Sensors (Basel) ; 21(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34502709

ABSTRACT

With the recent advances in deep learning, wearable sensors have increasingly been used in automated animal activity recognition. However, there are two major challenges in improving recognition performance-multi-modal feature fusion and imbalanced data modeling. In this study, to improve classification performance for equine activities while tackling these two challenges, we developed a cross-modality interaction network (CMI-Net) involving a dual convolution neural network architecture and a cross-modality interaction module (CMIM). The CMIM adaptively recalibrated the temporal- and axis-wise features in each modality by leveraging multi-modal information to achieve deep intermodality interaction. A class-balanced (CB) focal loss was adopted to supervise the training of CMI-Net to alleviate the class imbalance problem. Motion data was acquired from six neck-attached inertial measurement units from six horses. The CMI-Net was trained and verified with leave-one-out cross-validation. The results demonstrated that our CMI-Net outperformed the existing algorithms with high precision (79.74%), recall (79.57%), F1-score (79.02%), and accuracy (93.37%). The adoption of CB focal loss improved the performance of CMI-Net, with increases of 2.76%, 4.16%, and 3.92% in precision, recall, and F1-score, respectively. In conclusion, CMI-Net and CB focal loss effectively enhanced the equine activity classification performance using imbalanced multi-modal sensor data.


Subject(s)
Algorithms , Neural Networks, Computer , Animals , Horses
SELECTION OF CITATIONS
SEARCH DETAIL
...