Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Stem Cells Int ; 2019: 9071720, 2019.
Article in English | MEDLINE | ID: mdl-31885630

ABSTRACT

Female infertility impacts the quality of life and well-being of affected individuals and couples. Female reproductive diseases, such as primary ovarian insufficiency, polycystic ovary syndrome, endometriosis, fallopian tube obstruction, and Asherman syndrome, can induce infertility. In recent years, translational medicine has developed rapidly, and clinical researchers are focusing on the treatment of female infertility using novel approaches. Owing to the advantages of convenient samples, abundant sources, and avoidable ethical issues, mesenchymal stem cells (MSCs) can be applied widely in the clinic. This paper reviews recent advances in using four types of MSCs, bone marrow stromal cells, adipose-derived stem cells, menstrual blood mesenchymal stem cells, and umbilical cord mesenchymal stem cells. Each of these have been used for the treatment of ovarian and uterine diseases, and provide new approaches for the treatment of female infertility.

2.
Yi Chuan ; 40(12): 1101-1111, 2018 Dec 20.
Article in Chinese | MEDLINE | ID: mdl-30559099

ABSTRACT

Rice is an important food crop in the world. The awn may protect rice seeds from being cut by birds, which is important in rice domestication, survival and diffusion. However, the characteristic of awn is gradually washed out during rice domestication and artificial selection. Mapping and cloning of rice awn genes is the basis of studying the genetic mechanism of awn domestication. In this study, 146 chromosome segment substitution lines (CSSLs) derived from DongNanHui 810/ZhangPu wild rice with DongNanHui 810 as the recurrent parent were used to analyze the quantitative trait loci (QTL) controlling the long awn of rice. The results showed that four CSSLs contained one QTL for the long awn. Using substitution mapping, the GAD1-2 gene was mapped between two markers (Ind8-10 and RM4936) on chromosome 8, with a genetic distance of about 4.75 Mb. Using the dominant individuals of segregating populations, the GAD1-2 gene was eventually located between two Indel markers, with a physical distance of about 27 kb, which contained only two candidate genes Os08g0485500 and Os08g0485400. Sequencing analysis showed that Os08g0485500 was the candidate gene of GAD1-2. Further analysis showed that there were six bases missing in the conservative ORF region, resulting in the absence of serine and cysteine that led to the long awn of the four CSSLs. The GAD1 gene was also cloned in this position, suggesting that GAD1-2 and GAD1 were allelic. This study laid a foundation for further understanding of the genetic regulation mechanism and genetic evolution of the awn gene in rice.


Subject(s)
Glutamate Decarboxylase/genetics , Oryza/genetics , Quantitative Trait Loci , Alleles , Chromosome Mapping , Chromosomes, Plant/genetics , Cloning, Molecular , Genes, Plant , Oryza/enzymology , Phenotype , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...