Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioelectrochemistry ; 156: 108630, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38147788

ABSTRACT

In this work, a novel two-dimensional semiconducting metal covalent organic framework (CuTAPc-TFPP-COF) was synthesized and used as biosensing platform to construct aptasensor for trace detection of tetracycline (TC). The CuTAPc-TFPP-COF integrates the highly conjugated structure, large specific surface area, high porosity, abundant nitrogen functional groups, excellent electrochemical activity, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the CuTAPc-TFPP-COF-based aptasensor shows high sensitivity for detecting TC via specific recognition between aptamer and TC to form Apt-TC complex. An ultralow detection limit of 59.6 fM is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.1-100000 pM for TC. The CuTAPc-TFPP-COF-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and excellent applicability for real river water, milk, and pork samples. Therefore, the CuTAPc-TFPP-COF-based aptasensor will be promising for detecting trace harmful antibiotics residues in environmental water and food samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Isoindoles , Metal-Organic Frameworks , Organometallic Compounds , Porphyrins , Putrescine , Anti-Bacterial Agents/analysis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection , Metal-Organic Frameworks/chemistry , Putrescine/analogs & derivatives , Reproducibility of Results , Tetracycline , Water
2.
RSC Adv ; 13(40): 28148-28157, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37753396

ABSTRACT

In this work, a metal-organic framework@covalent organic framework composite (TPN-COF@Fe-MIL-100) was prepared and used as a sensing material to construct an aptasensor for trace detection of tetracycline (TET). The TPN-COF@Fe-MIL-100 integrates a large surface area, porous structure, excellent electrochemical activity, rich chemical functionality, and strong bioaffinity for aptamers, providing abundant active sites to effectively anchor aptamer strands. As a result, the TPN-COF@Fe-MIL-100-based aptasensor shows high sensitivity for detecting TET via specific recognition between aptamer and TET to form G-quadruplex. An ultralow detection limit of 1.227 fg mL-1 is deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.01-10000 pg mL-1 for TET. The TPN-COF@Fe-MIL-100-based aptasensor also exhibits good selectivity, reproducibility, stability, regenerability, and applicability for a real milk sample. Therefore, the TPN-COF@Fe-MIL-100-based aptasensor will be promising for detecting trace harmful antibiotics residues for food safety.

3.
Inorg Chem ; 58(8): 4979-4988, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30933488

ABSTRACT

Tunable luminescence (quenching or blue shift) of HNA/OS-LRH composites (HNA is 3-hydroxy-2-naphthoic acid; OS is the anionic surfactant of 1-octanesulfonic acid sodium; LRHs are layered rare-earth hydroxides, R = Tb3+, Y3+) in the solid state and delaminated state is reported, which is utilized as an effective fluorescent probe for detecting metal ions. HNA/OS species are intercalated into LRH layers to generate composites of HNA xOS1- x-LTbH ( x = 0.10, 0.15, 0.20 , 0.25) and HNA yOS1- y-LYH ( y = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30). In the solid state, LYH composites exhibit green emissions (from 493 to 504 nm) with a large blue shift in comparison to the 542 nm emission of free HNA- anions, while in the delaminated state in formamide (FM), the composites display blue emission (480 nm) relative to the green emission (512 nm) of an HNA soltuion in FM. However, LTbH composites display coquenched luminescence in both the solid state and delaminated state. Also, HNA0.25OS0.75-1:1-LYH, HNA0.25OS0.75-1:2-LYH, and HNA0.05OS0.95-1:1-LYH (1:1 and 1:2 are HNA:NaOH molar ratios) show significantly elongated fluorescence lifetimes of 15.35, 14.37, and 12.72 ns, respectively, in comparison with free HNA-Na (6.44 ns), and their quantum yields of 23.40%, 21.97%, and 22.31%, respectively, are much larger than that of free HNA-Na (4.86%). The LTbH composite (HNA0.25OS0.75-1:1-LTbH) has also a relatively higher quantum yield of 12.46%. The HNA0.25OS0.75-1:1-LYH colloid exhibits excellent recognition selectivity for Al3+ over other metal ions (Mg2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+, and Hg2+) with distinct fluorescence sensitization. It shows an intense change in its fluorescence emission when it is bound to Al3+ ions, giving a lower detection limit of 6.32 × 10-6 M. This is novel research on the fluorescence chemosensing of LRH composites.

4.
J Colloid Interface Sci ; 494: 215-222, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28160706

ABSTRACT

In this study, water-n-BuOH mixed solvents were used to synthesize the ZnAl-layered double hydroxides (ZnAl-LDHs) via hydrothermal method. The XRD, FT-IR, SEM, ICP and CHN analyses revealed that the type of intercalated anions, the layer Zn/Al ratios, and morphologies of the LDHs depended on the ratio of V(water)/V(n-BuOH) in the mixed solvents. When the ratio of V(water)/V(n-BuOH) is 3 or 0.3, the as-prepared LDHs had 3D "silk flowers" (ZnAl-LDH-3) or "Sedimentary rock" morphology (ZnAl-LDH-0.3). Adsorption properties of dyes on calcined LDHs were studied. Compared with ZnAl-LDO-0.3 and ZnAl-LDO-w (calcined from the LDHs obtained in pure water), ZnAl-LDO-3 showed much better adsorption efficiency for anionic dyes thanks to its much larger BET-specific surface area. The sorption kinetics for dyes was appropriately described by the pseudo-second-order model and sorption isotherms can be fitted more satisfactorily by the Langmuir model. With the increasing concentrations of dyes from 10mg/L to 400mg/L, the maximum absorption capacities of ZnAl-LDO-3 were 1540mg/g (2.21mmol/g) for congo red, 1153mg/g (3.52mmol/g) for methyl orange and 390mg/g (0.63mmol/g) for active red (X-3B), respectively. The adsorption dyes onto the external surface is still the main mechanism for LDO adsorbents. The ZnAl-LDO-3 was a potential adsorbent for dyeing wastewater treatment.

5.
J Colloid Interface Sci ; 445: 294-302, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25626135

ABSTRACT

This work aimed to develop waste (i.e., sulfonated lignin) application in simulated wastewater treatment. Sulfonated lignin (LS), a byproduct of the paper industry, was intercalated into a parent host of layered double hydroxides (LDH) by swelling-restacking method. X-ray diffraction patterns of the composite confirmed that long-chain LS anions exited in the interlayer of Mg2Al-LDH in two forms: (1) a "flat" form with d003=0.88 nm; and (2) a "vertical" form with d003=9.08 nm. Results showed that the obtained Mg2Al-LS-LDH composite was highly selective and efficient for the removal of Pb(2+) and Cu(2+), especially Pb(2+), compared with the NO3-LDH precursor. The coexisting cations decreased the removal efficiency of Pb(2+) or Cu(2+) on Mg2Al-LS-LDH composite, which could be ascribed to outer-sphere sorption style, and the effect order of cations is Li(+)>Ca(2+)>K(+)>Na(+). The pseudo-second-order model appropriately described the sorption kinetics of Mg2Al-LS-LDH composite for Pb(2+) and Cu(2+). Sorption isotherms for Pb(2+) and Cu(2+) by the Mg2Al-LS-LDH composite were found to be more satisfactorily fitted by the Langmuir model than by the Freundlich one. With increased Pb(2+) or Cu(2+) concentration from 2 ppm to 200 ppm, the maximum absorption capacity of the composite toward Pb(2+) was ∼123 mg/g and that toward Cu(2+) was ∼64 mg/g. Therefore, a new, low-cost adsorbent was synthesized by utilizing the byproduct LS, which may be a potential remedy for Pb(2+) or Cu(2+) in contaminated water.

6.
Inorg Chem ; 53(3): 1521-9, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24422491

ABSTRACT

Nanocage structures derived from decasulfonated ß-cyclodextrin (SCD) intercalated ZnAl- and MgAl- layered double hydroxides (LDHs) were prepared through calcination-rehydration reactions. The ZnAl- and MgAl-LDH layers revealed different basal spacings (1.51 nm for SCD-ZnAl-LDH and 1.61 nm for SCD-MgAl-LDH) when contacting SCD, while producing similar monolayer and vertical SCD orientations with cavity axis perpendicular to the LDH layer. The structures of the SCD-LDH and carboxymethyl-ß-cyclodextrin (CMCD)-LDH intercalates were fully analyzed and compared, and a structural model for the SCD-LDH was proposed. The thermal stability of SCD after intercalation was remarkably enhanced, with decomposition temperature increased by 230 °C. The adsorption property of the SCD-LDH composites for phenol compounds (the effects of adsorption time and phenol concentration on adsorption) was investigated completely. The monolayer arrangement of the interlayer SCD did not affect the adsorption efficiency toward organic compounds, which verified the highly swelling ability of the layered compounds in solvents. Both composites illustrated preferential adsorptive efficiency for 2,3-dimethylphenol (DMP) in comparison with other two phenols of hydroquinone (HQ) and tert-butyl-phenol (TBP), resulting from appropriate hydrophobicity and steric hindrance of DMP. For the two phenols of HQ and TBP, SCD-MgAl-LDH gave better adsorption capacity compared with SCD-ZnAl-LDH. The double-confinement effect due to the combination of the parent LDH host and intercalated secondary host may impose high selectivity for guests. This kind of nanocage structure may have potential applications as adsorbents, synergistic agents, and storage vessels for particular guests.

7.
Chem Commun (Camb) ; (3): 331-3, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19209319

ABSTRACT

Utilizing the osmotic swelling of LDH in formamide, for the first time, the bulky thiacalix[4]arene anion is introduced, leading to the recovery of LDH layers, and the hexagonal prism morphology of the precursor is well retained.

SELECTION OF CITATIONS
SEARCH DETAIL
...