Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(24): 30715-30727, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38833722

ABSTRACT

Pulp and periapical diseases can lead to the cessation of tooth development, resulting in compromised tooth structure and functions. Despite numerous efforts to induce pulp regeneration, effective strategies are still lacking. Growth factors (GFs) hold considerable promise in pulp regeneration due to their diverse cellular regulatory properties. However, the limited half-lives and susceptibility to degradation of exogenous GFs necessitate the administration of supra-physiological doses, leading to undesirable side effects. In this research, a heparin-functionalized bioactive glass (CaO-P2O5-SiO2-Heparin, abbreviated as PSC-Heparin) with strong bioactivity and a stable neutral pH is developed as a promising candidate to addressing challenges in pulp regeneration. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis reveal the successful synthesis of PSC-Heparin. Scanning electron microscopy and X-ray diffraction show the hydroxyapatite formation can be observed on the surface of PSC-Heparin after soaking in simulated body fluid for 12 h. PSC-Heparin is capable of harvesting various endogenous GFs and sustainably releasing them over an extended duration by the enzyme-linked immunosorbent assay. Cytological experiments show that developed PSC-Heparin can facilitate the adhesion, migration, proliferation, and odontogenic differentiation of stem cells from apical papillae. Notably, the histological analysis of subcutaneous implantation in nude mice demonstrates PSC-Heparin is capable of promoting the odontoblast-like layers and pulp-dentin complex formation without the addition of exogenous GFs, which is vital for clinical applications. This work highlights an effective strategy of harvesting endogenous GFs and avoiding the involvement of exogenous GFs to achieve pulp-dentin complex regeneration, which may open a new horizon for regenerative endodontic therapy.


Subject(s)
Dental Pulp , Heparin , Regeneration , Heparin/chemistry , Heparin/pharmacology , Dental Pulp/drug effects , Dental Pulp/cytology , Dental Pulp/metabolism , Animals , Regeneration/drug effects , Mice , Glass/chemistry , Humans , Mice, Nude , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/chemistry , Stem Cells/drug effects , Stem Cells/cytology , Stem Cells/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects
2.
Environ Res ; 252(Pt 2): 118908, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38614197

ABSTRACT

Pharmaceuticals and Personal Care Products (PPCPs) are inadvertently released into the aquatic environment, causing detrimental effects on aquatic ecosystem. There is an urgent need of an in-deep investigation on contamination information of PPCPs in aquatic environment as well as the ecological risks to the aquatic ecosystem. This study was carried out in Lipu River basin, China, to investigate the distribution pattern and ecological risks of PPCPs. Results showed that PPCPs pollution is ubiquitous, 29 out of 30 targeted PPCPs were detected in Lipu River. Fourteen PPCPs were detected with a frequency of 100% in all water samples, and ten PPCPs were detected with a frequency of more than 80%. The cumulated PPCPs concentrations ranged from 33.30 ng/L to 99.60 ng/L, with a median value of 47.20 ng/L in Lipu River. Caffeine, flumequine, nifedipine, and lomefloxacin were the predominant PPCPs in study area. Caffeine showed high ecological risk, five and seven individual PPCP showed medium and low ecological risk to algae.


Subject(s)
Cosmetics , Environmental Monitoring , Rivers , Water Pollutants, Chemical , China , Water Pollutants, Chemical/analysis , Risk Assessment , Rivers/chemistry , Pharmaceutical Preparations/analysis , Cosmetics/analysis
3.
J Dent ; 143: 104905, 2024 04.
Article in English | MEDLINE | ID: mdl-38428716

ABSTRACT

OBJECTIVE: To prepare a bioactive dentin adhesive and investigate its effect on promoting bonding durability of dentin. METHODS: The mineralization of the bioactive glass with high phosphorus (10.8 mol% P2O5-54.2 mol% SiO2-35 mol% CaO, named PSC) and its ability to induce type I collagen mineralization were observed by SEM and TEM. The Control-Bond and the bioactive dentin adhesive containing 20 wt% PSC particles (PSC-Bond) were prepared, and their degree of conversion (DC), microtensile bond strength (µTBS), film thickness and mineralization performance were evaluated. To evaluate the bonding durability, dentin bonding samples were prepared by Control-Bond and PSC-Bond, and mineralizated in simulated body fluid for 24 h, 3 months, and 6 months. Then, the long-term bond strength and microleakage at the adhesive interface of dentin bonding samples were evaluated by microtensile testing and semiquantitative ELIASA respectively. RESULTS: The PSC showed superior mineralization at 24 h and induced type I collagen mineralization to some extent under weakly alkaline conditions. For PSC-Bond, DC was 62.65 ± 1.20%, µTBS was 39.25 ± 4.24 MPa and film thickness was 17.00 ± 2.61 µm. PSC-Bond also formed hydroxyapatite and maintained good mineralization at the bonding interface. At 24 h, no significant differences in µTBS and interface microleakage were observed between the Control-Bond and PSC-Bond groups. After 6 months of aging, the µTBS was significantly higher and the interface microleakage was significantly lower of PSC-Bond group than those of Control-Bond group. SIGNIFICANCE: PSC-Bond maintained bond strength stability and reduced interface microleakage to some extent, possibly reducing the occurrence of secondary caries, while maintaining long-term effectiveness of adhesive restorations.


Subject(s)
Dental Bonding , Dental Cements , Dental Cements/chemistry , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry , Collagen Type I , Silicon Dioxide/pharmacology , Dentin , Tensile Strength , Materials Testing , Composite Resins/chemistry
4.
Arch Oral Biol ; 151: 105701, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37084484

ABSTRACT

OBJECTIVE: This study aimed to identify candidate genes for inheritable dentin defects in three Chinese pedigrees and characterize the property of affected teeth. DESIGN: Clinical and radiological features were recorded for the affected individuals. Genomic DNA obtained from peripheral venous blood or saliva were analyzed by whole-exome sequencing. The density and microhardness of affected dentin was measured. Scanning electron microscopy (SEM) was also performed to obtain the microstructure phenotype. RESULTS: 1) General appearance: the affected dentitions shared yellowish-brown or milky color. Radiographs showed that the pulp cavity and root canals were obliterated in varying degrees or exhibited a pulp aspect in the 'thistle tube'. Some patients exhibited periapical infections without pulpal exposure, and some affected individuals showed shortened, abnormally thin roots accompanied by severe alveolar bone loss. 2) Genomic analysis: three new frameshift mutations (NM_014208.3: c.2833delA, c.2852delGand c.3239delA) were identified in exon 5 of dentin sialophosphoprotein (DSPP) gene, altering dentin phosphoprotein (DPP) as result. In vitro studies showed that the density and microhardness of affected dentin were decreased, the dentinal tubules were sparse and arranged disorderly, and the dentinal-enamel-junction (DEJ) was abnormal. CONCLUSIONS: In this study, we identified three novel frameshift mutations of dentin sialophosphoprotein gene related to inherited dentin defects. These mutations are speculated to cause abnormal coding of dentin phosphoprotein C-terminus, which affect dentin mineralization. These results expand the spectrum of dentin sialophosphoprotein gene mutations causing inheritable dentin defects and broaden our understanding of the biological mechanisms by which dentin forms.


Subject(s)
Dentinogenesis Imperfecta , Frameshift Mutation , Humans , Dentinogenesis Imperfecta/genetics , Phosphoproteins/genetics , Extracellular Matrix Proteins/genetics , Sialoglycoproteins/genetics , Dentin
5.
Regen Biomater ; 10: rbad024, 2023.
Article in English | MEDLINE | ID: mdl-37020752

ABSTRACT

Bioactive glasses (BG) have been generally used in bone defects repair for its good osteoinductivity and osteoconductivity. However, the early angiogenesis of BG in the repair of large-sized bone defects may not be sufficient enough to support new bone formation, resulting in the failure of bone repair. Photobiomodulation (PBM) therapy, which is superior on promoting early angiogenesis, may contribute to the angiogenesis of BG and further enhance the repair of bone defects. Therefore, we applied BG and PBM in combination and preliminarily investigated their additive effects on bone regeneration both in vitro and in vivo. The in vitro results revealed that BG combined with PBM remarkably enhanced human bone marrow mesenchymal stem cells proliferation, osteogenic-related genes expression and mineralization, which was better than applying BG or PBM respectively. For in vivo studies, the histological staining results showed that BG induced new bone formation in the interior of defects and promoted new bone reconstruction at 6 weeks post-operation. The micro-computed tomography results further confirmed that BG combined with PBM accelerated bone formation and maturation, improved the speed and quality of bone regeneration, and promoted bone repair. In conclusion, with the optimum BG and PBM parameters, BG combined with PBM generated additive effects on promoting bone regeneration.

6.
Biomed Mater ; 17(4)2022 05 13.
Article in English | MEDLINE | ID: mdl-35477157

ABSTRACT

Bioactive glasses (BG) have been widely utilized as a biomaterial for bone repair. However, the early angiogenesis of BG may be inadequate, which weakens its osteogenic effects in large-sized bone defects and often leads to the failure of bone regeneration. In this study, we explored the effects of photobiomodulation (PBM) combined with BG on early angiogenesis to solve this bottleneck problem of insufficient early angiogenesis.In vitro, human umbilical vein endothelial cells (HUVECs) were cultured with BG extracts and treated with PBM using 1 J cm-2. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) and tubule formation assay were utilized to detect HUVECs' proliferation, vascular growth factor genes expression and tubules formation.In vivo, bone defects at the femoral metaphysis in Sprague-Dawley rats were treated with BG particulates and PBM at 120 J cm-2. Hematoxylin-eosin staining was used to observe the inflammatory response, tissue formation and biomaterial absorption of bone defects. Immunohistochemical staining was applied to observe the vascular-like structure formation. Thein vitroresults showed that PBM combined with BG significantly promoted HUVECs' proliferation, genes expression and mature tubules formation. On days 2, 4 and 7, the mRNA expression of VEGF in BG + PBM group was 2.70-, 2.59- and 3.05-fold higher than control (P< 0.05), and significantly higher than PBM and BG groups (P< 0.05). On days 4 and 7, the bFGF gene expression in BG + PBM group was 2.42- and 1.82-fold higher than control (P< 0.05), and also higher than PBM and BG groups (P< 0.05). Tube formation assay showed that mature tubules were formed in BG + PBM and PBM groups after 4 h, and the number in BG + PBM group was significantly higher than other groups (P< 0.05).In vivoresults further confirmed PBM induced early angiogenesis, with more vascular-like structures observed in BG + PBM and PBM groups 2 week post-surgery. With the optimum PBM fluence and BG concentration, PBM combined with BG exerted additive effects on enhancing early angiogenesis.


Subject(s)
Bone Regeneration , Osteogenesis , Animals , Biocompatible Materials/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Rats , Rats, Sprague-Dawley
7.
Materials (Basel) ; 14(4)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33669959

ABSTRACT

To investigate the mechanical behavior of the single-lap joints (SLJs) adhesively bonded structure of carbon fiber reinforced polymer (CFRP) laminates under the low-velocity impact (LVI) and tensile-after impact (TAI), tests and simulations were carried out. A finite element model (FEM) was established based on the cohesive zone model (CZM) and Hashin criterion to predict the damage evolution process of adhesive film, intra- and inter-laminar of the SLJs of CFRP laminates, and its effectiveness was verified by experiments. Moreover, three different overlap lengths (20 mm, 30 mm, and 40 mm) and four different impact energies (Intact joint, 10 J, 20 J, and 30 J) are considered in the present study. Finally, the effects of different impact energies and overlap lengths on the residual strength of SLJs after impact were discussed. The results divulged that numerical results of impact and TAI processes of SLJs were in good agreement with experiment results. During the impact process, the damage of the laminates was primarily fiber and matrix tensile damage, whereas the adhesive film was damaged cohesively; the areas of damage increased with the increase of impact energy, and the normal stress of the adhesive film expanded from the edge to the middle region with the increase of impact force. The influence of LVI on SLJs adhesively bonded structures was very significant, and it is not effective to obtain a higher impact resistance by increasing the overlap length. For the tensile process, the failure mode of TAI of the SLJs was interface failure, the surplus strength of the SLJs gradually decreased with the increase of the impact energy because of the smaller overlap length, the overlap length more than 30 mm, and the low energy impact has almost no effect on the residual strength of the SLJs.

8.
J Endod ; 46(2): 216-223, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31889583

ABSTRACT

INTRODUCTION: This study aimed to use nanobioactive glass (nBG) to guide the directional migration of stem cells and odontogenic differentiation on primary dentin, which are important for the functional regeneration of pulp-dentin tissue. METHODS: Human bone marrow stem cells (BMSCs) were cocultured with 0.5 mg/mL nBG. The cell-biomaterial interaction was monitored using the IncuCyte S3 live cell imaging system (Essen BioScience, Ann Arbor, MI). The adhesion and morphology of BMSCs growing on nBG-coated dentin were assessed at 2 hours and 3 days. The chemotaxis effect of nBG-coated dentin on BMSCs was tested using a 3-dimensional collagen gel model. Subcutaneous transplantation of nBG-treated dentin slices into nude mice was used to investigate cell homing and odontogenic differentiation in vivo. RESULTS: nBG particles showed good biocompatibility, and they were gradually degraded and relocated during interactions with BMSCs. BMSCs had better initial attachment to an nBG-coated dentin surface than to an untreated dentin surface. Cell migration assays showed that nBG-coated dentin induced significantly more cell migration than untreated dentin. An in vivo study revealed that nBG-coated dentin slices facilitated recellularization and revascularization in the root canal and that dentin sialophosphoprotein-positive cells were detected on the surface of the primary dentin. CONCLUSIONS: nBG recruits stem cells to move toward dentin and further promotes cell adhesion and odontogenic differentiation on primary dentin, which help regenerate the biomimetic structure of pulp-dentin tissue.


Subject(s)
Bone Marrow Cells , Cell Differentiation , Dentin , Odontogenesis , Animals , Cells, Cultured , Dental Pulp , Humans , Mice , Mice, Nude
SELECTION OF CITATIONS
SEARCH DETAIL
...