Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 12: 852383, 2022.
Article in English | MEDLINE | ID: mdl-35392233

ABSTRACT

Esophageal squamous cell carcinoma (ESCC), is the most common type of esophageal cancer worldwide, mainly occurring in the Asian esophageal cancer belt, including northern China, Iran, and parts of Africa. Phosphatidlinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway is one of the most important cellular signaling pathways, which plays a crucial role in the regulation of cell growth, differentiation, migration, metabolism and proliferation. In addition, mutations in some molecules of PI3K/Akt/mTOR pathway are closely associated with survival and prognosis in ESCC patients. A large number of studies have found that there are many molecules in ESCC that can regulate the PI3K/Akt/mTOR pathway. Overexpression of these molecules often causes aberrant activation of PI3K/Akt/mTOR pathway. Currently, several effective PI3K/Akt/mTOR pathway inhibitors have been developed, which can play anticancer roles either alone or in combination with other inhibitors. This review mainly introduces the general situation of ESCC, the composition and function of PI3K/Akt/mTOR pathway, and regulatory factors that interact with PI3K/Akt/mTOR signaling pathway. Meanwhile, mutations and inhibitors of PI3K/Akt/mTOR pathway in ESCC are also elucidated.

2.
Mol Carcinog ; 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33289209

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors of the digestive tract in humans. Several studies have indicated that PAK4 is associated with the risk of ESCC and may be a potential druggable kinase for ESCC treatment. However, the underlying mechanism remains largely unknown. The aim of our study is to identify the functional role of PAK4 in ESCC. To determine the expression of PAK4 in ESCC, Western blot analysis and immunohistochemistry were performed, and the results showed that PAK4 is significantly upregulated in ESCC tissues and cell lines compared with normal controls and normal esophageal epithelial cell line. To further investigate the role of PAK4 in ESCC, cell viability assays, anchorage-independent cell growth assays, wound healing assays, cellular invasion assays, in vivo xenograft mouse models, and metastasis assays were conducted, and the results showed that PAK4 can significantly facilitate ESCC proliferation and metastasis in vitro and in vivo. To determine the potential target of PAK4 in ESCC progression, a pull-down assay was performed, and the results showed that LASP1 may be a potential target of PAK4. An immunoprecipitation assay and confocal microscopy analysis confirmed that PAK4 can bind to and colocalize with LASP1 in vitro and in cells. Notably, rescue experiments further illustrated the mechanistic network of PAK4/LASP1. Our research reveals the oncogenic roles of PAK4 in ESCC and preliminarily elucidates the mechanistic network of PAK4/LASP1 in ESCC.

3.
Ultrasound Med Biol ; 43(2): 482-493, 2017 02.
Article in English | MEDLINE | ID: mdl-27894833

ABSTRACT

The feasibility of using ultrasonic Nakagami imaging to evaluate thermal lesions induced by microwave ablation (MWA) in ex vivo porcine liver was explored. Dynamic changes in echo amplitudes and Nakagami parameters in the region of the MWA-induced thermal lesion, as well as the contrast-to-noise ratio (CNR) between the MWA-induced thermal lesion and the surrounding normal tissue, were calculated simultaneously during the MWA procedure. After MWA exposure, a bright hyper-echoic region appeared in ultrasonic B-mode and Nakagami parameter images as an indicator of the thermal lesion. Mean values of the Nakagami parameter in the thermal lesion region increased to 0.58, 0.71 and 0.91 after 1, 3 and 5 min of MVA. There were no significant differences in envelope amplitudes in the thermal lesion region among ultrasonic B-mode images obtained after different durations of MWA. Unlike ultrasonic B-mode images, Nakagami images were less affected by the shadow effect in monitoring of MWA exposure, and a fairly complete hyper-echoic region was observed in the Nakagami image. The mean value of the Nakagami parameter increased from approximately 0.47 to 0.82 during MWA exposure. At the end of the postablation stage, the mean value of the Nakagami parameter decreased to 0.55 and was higher than that before MWA exposure. CNR values calculated for Nakagami parameter images increased from 0.13 to approximately 0.61 during MWA and then decreased to 0.26 at the end of the post-ablation stage. The corresponding CNR values calculated for ultrasonic B-mode images were 0.24, 0.42 and 0.17. This preliminary study on ex vivo porcine liver suggested that Nakagami imaging have potential use in evaluating the formation of MWA-induced thermal lesions. Further in vivo studies are needed to evaluate the potential application.


Subject(s)
Ablation Techniques/methods , Liver/diagnostic imaging , Liver/surgery , Ultrasonography/methods , Animals , Feasibility Studies , Microwaves , Models, Animal , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...