Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Ann Emerg Med ; 80(4): e67-e68, 2022 10.
Article in English | MEDLINE | ID: mdl-36153059
2.
Molecules ; 26(18)2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34577195

ABSTRACT

Acne vulgaris is a highly prevalent skin disorder requiring treatment and management by dermatologists. Antibiotics such as clindamycin are commonly used to treat acne vulgaris. However, from both medical and public health perspectives, the development of alternative remedies has become essential due to the increase in antibiotic resistance. Topical therapy is useful as a single or combined treatment for mild and moderate acne and is often employed as maintenance therapy. Thus, the current study investigated the anti-inflammatory, antibacterial, and restorative effects of sesquiterpene farnesol on acne vulgaris induced by Cutibacterium acnes (C. acnes) in vitro and in a rat model. The minimum inhibitory concentration (MIC) of farnesol against C. acnes was 0.14 mM, and the IC50 of 24 h exposure to farnesol in HaCaT keratinocytes was approximately 1.4 mM. Moreover, 0.8 mM farnesol exhibited the strongest effects in terms of the alleviation of inflammatory responses and abscesses and necrotic tissue repair in C.acnes-induced acne lesions; 0.4 mM farnesol and clindamycin gel also exerted similar actions after a two-time treatment. By contrast, nearly doubling the tissue repair scores, 0.4 mM farnesol displayed great anti-inflammatory and the strongest reparative actions after a four-time treatment, followed by 0.8 mM farnesol and a commercial gel. Approximately 2-10-fold decreases in interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, found by Western blot analysis, were predominantly consistent with the histopathological findings and tissue repair scores. The basal hydroxypropyl methylcellulose (HPMC) gel did not exert anti-inflammatory or reparative effects on rat acne lesions. Our results suggest that the topical application of a gel containing farnesol is a promising alternative remedy for acne vulgaris.


Subject(s)
Anti-Bacterial Agents/chemistry , Farnesol/chemistry , Propionibacterium acnes/metabolism , Sesquiterpenes/chemistry , Skin Diseases/drug therapy , Skin Diseases/metabolism , Administration, Cutaneous , Animals , Anti-Bacterial Agents/pharmacology , Farnesol/pharmacology , HaCaT Cells , Humans , Hypromellose Derivatives/metabolism , Interleukins/metabolism , Male , Microbial Sensitivity Tests , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
3.
Int J Mol Sci ; 22(11)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199947

ABSTRACT

Particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) increases oxidative stress through free radical generation and incomplete volatilization. In addition to affecting the respiratory system, PM2.5 causes aging- and inflammation-related damage to skin. Farnesol (Farn), a natural benzyl semiterpene, possesses anti-inflammatory, antioxidative, and antibacterial properties. However, because of its poor water solubility and cytotoxicity at high concentrations, the biomedical applications of Farn have been limited. This study examined the deleterious effects of PM2.5 on the epidermis and dermis. In addition, Farn-encapsulated liposomes (Lipo-Farn) and gelatin/HA/xanthan gel containing Lipo-Farn were prepared and applied in vivo to repair and alleviate PM2.5-induced damage and inflammation in skin. The prepared Lipo-Farn was 342 ± 90 nm in diameter with an encapsulation rate of 69%; the encapsulation significantly reduced the cytotoxicity of Farn. Lipo-Farn exhibited a slow-release rate of 35% after 192 h of incubation. The half-maximal inhibitory concentration of PM2.5 was approximately 850 µg/mL, and ≥400 µg/mL PM2.5 significantly increased IL-6 production in skin fibroblasts. Severe impairment in the epidermis and hair follicles and moderate impairment in the dermis were found in the groups treated with post-PM2.5 and continuous subcutaneous injection of PM2.5. Acute and chronic inflammation was observed in the skin in both experimental categories in vivo. Treatment with 4 mM Lipo-Farn largely repaired PM2.5-induced injury in the epidermis and dermis, restored injured hair follicles, and alleviated acute and chronic inflammation induced by PM2.5 in rat skin. In addition, treatment with 4 mM pure Farn and 2 mM Lipo-Farn exerted moderate reparative and anti-inflammatory effects on impaired skin. The findings of the current study indicate the therapeutic and protective effects of Lipo-Farn against various injuries caused by PM2.5 in the pilosebaceous units, epidermis, and dermis of skin.


Subject(s)
Dermis/drug effects , Epidermis/drug effects , Farnesol/pharmacology , Liposomes/administration & dosage , Particulate Matter/toxicity , Protective Agents/pharmacology , Skin Diseases/drug therapy , Animals , Antioxidants , Dermis/pathology , Epidermis/pathology , Female , Liposomes/chemistry , Rats , Rats, Sprague-Dawley , Skin Diseases/chemically induced , Skin Diseases/pathology
4.
Int J Mol Sci ; 22(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063380

ABSTRACT

MicroRNAs (miRNAs) could serve as ideal entry points to the deregulated pathways in osteoporosis due to their relatively simple upstream and downstream relationships with other molecules in the signaling cascades. Our study aimed to give a comprehensive review of the already identified miRNAs in osteoporosis from human blood samples and provide useful information for their clinical application. A systematic literature search for relevant studies was conducted in the Pubmed database from inception to December 2020. We set two essential inclusion criteria: human blood sampling and design of controlled studies. We sorted the results of analysis on human blood samples according to the study settings and compiled the most promising miRNAs with analyzed diagnostic values. Furthermore, in vitro and in vivo evidence for the mechanisms of the identified miRNAs was also illustrated. Based on both diagnostic value and evidence of mechanism from in vitro and in vivo experiments, miR-23b-3p, miR-140-3p, miR-300, miR-155-5p, miR-208a-3p, and miR-637 were preferred candidates in diagnostic panels and as therapeutic agents. Further studies are needed to build sound foundations for the clinical usage of miRNAs in osteoporosis.


Subject(s)
MicroRNAs/blood , MicroRNAs/genetics , Osteoporosis/genetics , Osteoporotic Fractures/genetics , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Estrogens/blood , Female , Frail Elderly , Humans , MicroRNAs/metabolism , Middle Aged , Osteoporosis/complications , Osteoporosis/metabolism , Wnt Signaling Pathway/genetics
5.
Antioxidants (Basel) ; 10(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374730

ABSTRACT

(-)-Epigallocatechin 3-gallate (EGCG) is the main active green tea catechin and has a wide variety of benefits for health. Post-traumatic osteoarthritis (PTOA) occurs as a consequence of joint injuries that commonly happen in the young population. In this study, we investigated the effects of EGCG on PTOA prevention by using the anterior cruciate ligament transection (ACLT)-OA model and further investigated the roles of autophagy in OA treatment. Our results showed that intra-articular injection of EGCG significantly improved the functional performances and decreased cartilage degradation. EGCG treatment attenuated the inflammation on synovial tissue and cartilage through less immunostained cyclooxygenase-2 and matrix metalloproteinase-13. We further noted EGCG may modulate the chondrocyte apoptosis by activation of the cytoprotective autophagy through reducing the expression of the mTOR and enhancing the expression of microtubule-associated protein light chain 3, beclin-1, and p62. In conclusion, intra-articular injection of EGCG after ACL injury inhibited the joint inflammation and cartilage degradation, thereby increasing joint function. EGCG treatment also reduced the chondrocyte apoptosis, possibly by activating autophagy. These findings suggested that EGCG may be a potential disease-modifying drug for preventing OA progression.

6.
Microorganisms ; 8(9)2020 Sep 20.
Article in English | MEDLINE | ID: mdl-32962221

ABSTRACT

BACKGROUND: Most drug-resistant Escherichia coli isolates in dogs come from diseased dogs. Prior to this study, the prevalence and risk factors of fecal carriage drug-resistant E. coli and epidemic clone sequence type (ST) 131 (including subtypes) isolates in dogs were unknown. METHODS: Rectal swabs were used for E. coli isolation from 299 non-infectious dogs in a veterinary teaching hospital in Taiwan. Antibiotic resistance and multiplex PCR analyses of E. coli for major STs were performed. RESULT: There were 43.1% cefazolin-resistant, 22.1% fluoroquinolone-resistant, and 9.4% extended-spectrum beta-lactamase-producing E. coli in our cohort. In the phylogenetic study, B2 was the predominant group (30.1%). The cefazolin-resistant group and ciprofloxacin-resistant group had greater antibiotic exposure in the last 14 days (p < 0.05). The age, sex, and dietary habits of the antibiotic-resistant and -susceptible groups were similar. In the seven isolates of ST131 in fecal colonization, the most predominant subtypes were FimH41 and FimH22. CONCLUSION: Recent antibiotic exposure was related to the fecal carriage of antibiotic-resistant E. coli isolates. Three major subtypes (FimH41, H22, and H30) of ST131 can thus be found in fecal carriage in dogs in Taiwan.

7.
J Vet Med Sci ; 82(10): 1537-1544, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32893199

ABSTRACT

Toxoplasma gondii and Neospora caninum are intracellular protozoan parasites that cause reproductive disorders in ruminants and humans. Information on the risk factors of T. gondii and N. caninum infections in goats is very limited in Taiwan. The aim of the study was to investigate the epidemiology and identify the risk factors of these two infections in goats. A total of 630 caprine sera were collected from 42 dairy goat farms and the owners were interviewed by a structured questionnaire. The apparent seroprevalences of T. gondii in farm- and individual- levels were respectively 88.1% and 32.22%, while those of N. caninum were 19.05% and 2.54%, respectively. Toxoplasma gondii B1 gene was identified in 7 feed samples and 8 from the water samples whereas N. caninum was not found. Wooden flooring was the main risk factor for T. gondii infection while the frequency of visits by staff to other farms and the breed of goat were risk factors for N. caninum. The improvement of flooring materials or thorough cleaning, periodic disinfection and maintenance of dryness on the floor are highly recommended for the prevention of T. gondii infection in farmed goats. In addition, unnecessary visits to other farms should be limited to prevent the spread of N. caninum. These factors should be highlighted for the prevention of T. gondii and N. caninum in goats, particularly when raised in intensive housing system with flooring on height.


Subject(s)
Coccidiosis/veterinary , Goat Diseases/parasitology , Neospora/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/epidemiology , Analysis of Variance , Animal Feed/parasitology , Animals , Antibodies, Protozoan/blood , Coccidiosis/epidemiology , Coccidiosis/parasitology , Coccidiosis/prevention & control , Drinking Water/parasitology , Goat Diseases/epidemiology , Goat Diseases/prevention & control , Goats , Immunoglobulin G/blood , Neospora/genetics , Neospora/isolation & purification , Odds Ratio , Polymerase Chain Reaction/veterinary , Risk Factors , Seroepidemiologic Studies , Surveys and Questionnaires , Taiwan/epidemiology , Toxoplasma/genetics , Toxoplasma/isolation & purification , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/prevention & control
8.
Biosci Rep ; 40(8)2020 08 28.
Article in English | MEDLINE | ID: mdl-32756863

ABSTRACT

Saikosaponin d (SSd), a primary active component of the Chinese herb Bupleurum falcatum, has antitumor and antiliver fibrosis effects. However, the toxicity of SSd at high doses can induce conditions such as metabolic disorders and hemolysis in vivo, thus hampering its clinical use. The present study investigated the toxicity-reducing effects of liposome encapsulation of pure SSd and the therapeutic action of SSd-loaded liposomes (Lipo-SSd) in liver fibrosis in vitro and in vivo. Lipo-SSd (diameter, 31.7 ± 7.8 nm) was prepared at an entrapment efficiency of 94.1%. After 10-day incubation, a slow release profile of 56% SSd from Lipo-SSd was observed. The IC50 of SSd on hepatic stellate cells was approximately 2.9 µM. Lipo-SSd exhibited much lower cytotoxicity than did pure SSd. In the in vivo toxicity assay, Lipo-SSd significantly increased mice survival rate and duration compared with pure SSd at the same dose. These in vitro and in vivo data indicate that liposomal encapsulation can reduce the cytotoxicity of SSd. The histopathological analysis results demonstrated that in mice with thioacetamide-induced liver fibrosis, Lipo-SSd exerted more obvious fibrosis- and inflammation-alleviating and liver tissue-reparative effects than did pure SSd; these effects are potentially attributable to the sustained release of SSd. In conclusion, Lipo-SSd fabricated here have antiliver fibrosis effects and lower toxicity compared with that of pure SSd.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Liver Cirrhosis, Experimental/drug therapy , Liver/drug effects , Oleanolic Acid/analogs & derivatives , Protective Agents/pharmacology , Saponins/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Delayed-Action Preparations , Dose-Response Relationship, Drug , Drug Compounding , Drug Liberation , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/pathology , Humans , Inhibitory Concentration 50 , Liposomes , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Male , Mice, Inbred C57BL , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Oleanolic Acid/toxicity , Protective Agents/chemistry , Protective Agents/toxicity , Saponins/chemistry , Saponins/toxicity , Thioacetamide
9.
Int J Nanomedicine ; 15: 3771-3790, 2020.
Article in English | MEDLINE | ID: mdl-32547027

ABSTRACT

INTRODUCTION: Rapamycin has been considered as a potential treatment for osteoarthritis (OA). Drug carriers fabricated from liposomes can prolong the effects of drugs and reduce side effects of drugs. Low-intensity pulsed ultrasound (LIPUS) has been found to possess anti-OA effects. MATERIALS AND METHODS: The anti-osteoarthritic effects of liposome-encapsulated rapamycin (L-rapa) combined with LIPUS were examined by culture of normal and OA chondrocytes in alginate beads and further validated in OA prone Dunkin-Hartley guinea pigs. RESULTS: L-rapa with LIPUS largely up-regulated aggrecan and type II collagen mRNA in human OA chondrocytes (HOACs). L-rapa with LIPUS caused significant enhancement in proteoglycan and type II collagen production in HOACs. Large decreases in both MMP-13 and IL-6 proteins were found in the HOACs exposed to L-rapa with LIPUS. Intra-articular injection of 40 µL L-rapa at both 5 µM and 50 µM twice a week combined with LIPUS thrice a week for 8 weeks significantly increased GAGs and type II collagen in the cartilage of knee. Results on OARSI score showed that intra-articular injection of 5 µM L-rapa with LIPUS displayed the greatest anti-OA effects. Immunohistochemistry revealed that L-rapa with or without LIPUS predominantly reduced MMP-13 in vivo. The values of complete blood count and serum biochemical examinations remained in the normal ranges after the injections with or without LIPUS. These data indicated that intra-articular injection of L-rapa collaborated with LIPUS is not only effective against OA but a safe OA therapy. CONCLUSION: Taken together, L-rapa combined with LIPUS possessed the most consistently and effectively anabolic and anti-catabolic effects in HOACs and the spontaneous OA guinea pigs. This study evidently revealed that liposome-encapsulation collaborated with LIPUS is able to reduce the effective dose and administration frequency of rapamycin and further stably reinforce its therapeutic actions against OA.


Subject(s)
Osteoarthritis/therapy , Sirolimus/therapeutic use , Ultrasonic Waves , Animals , Body Weight/drug effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cells, Cultured , Chondrocytes/drug effects , Chondrocytes/pathology , Chondrocytes/radiation effects , Collagen Type II/metabolism , Drug Liberation , Guinea Pigs , Humans , Injections, Intra-Articular , Interleukin-6/metabolism , Liposomes/ultrastructure , Male , Matrix Metalloproteinase 13/metabolism , Middle Aged , Osteoarthritis/blood , Osteoarthritis/pathology , Proteoglycans/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sirolimus/administration & dosage , Sirolimus/pharmacology
10.
Biomolecules ; 10(4)2020 04 16.
Article in English | MEDLINE | ID: mdl-32316306

ABSTRACT

Green tea drinking can ameliorate postmenopausal osteoporosis by increasing the bone mineral density. (-)-Epigallocatechin-3-gallate (EGCG), the abundant and active compound of tea catechin, was proven to be able to reduce bone loss and ameliorate microarchitecture in female ovariectomized rats. EGCG can also enhance the osteogenic differentiation of murine bone marrow mesenchymal stem cells and inhibit the osteoclastogenesis in RAW264.7 cells by modulation of the receptor activator of nuclear factor-kB (RANK)/RANK ligand (RANKL)/osteoprotegrin (OPG) (RANK/RANKL/OPG) pathway. Our previous study also found that EGCG can promote bone defect healing in the distal femur partially via bone morphogenetic protein-2 (BMP-2). Considering the osteoinduction property of BMP-2, we hypothesized that EGCG could accelerate the bone healing process with an increased expression of BMP-2. In this manuscript, we studied whether the local use of EGCG can facilitate tibial fracture healing. Fifty-six 4-month-old rats were randomly assigned to two groups after being weight-matched: a control group with vehicle treatment (Ctrl) and a study group with 10 µmol/L, 40 µL, EGCG treatment (EGCG). Two days after the operation, the rats were treated daily with EGCG or vehicle by percutaneous local injection for 2 weeks. The application of EGCG enhanced callus formation by increasing the bone volume and subsequently improved the mechanical properties of the tibial bone, including the maximal load, break load, stiffness, and Young's modulus. The results of the histology and BMP-2 immunohistochemistry staining showed that EGCG treatment accelerated the bone matrix formation and produced a stronger expression of BMP-2. Taken together, this study for the first time demonstrated that local treatment of EGCG can accelerate the fracture healing process at least partly via BMP-2.


Subject(s)
Catechin/analogs & derivatives , Fracture Healing/drug effects , Tea/chemistry , Animals , Biomechanical Phenomena , Bony Callus/diagnostic imaging , Bony Callus/physiopathology , Catechin/pharmacology , Catechin/therapeutic use , Male , Rats, Sprague-Dawley , Tibia/diagnostic imaging , Tibia/drug effects , Tibia/pathology , Tibia/physiopathology , Tibial Fractures/diagnostic imaging , Tibial Fractures/drug therapy , Tibial Fractures/pathology , Tibial Fractures/physiopathology , X-Ray Microtomography
11.
J Cosmet Dermatol ; 19(2): 540-552, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31243886

ABSTRACT

BACKGROUND: Farnesol is an acyclic sesquiterpene presents in various natural sources including fruits, vegetables, and herbs. In this study, we successfully prepared a farnesol-containing gel with ultraviolet B-screening and skin-repairing capabilities. Furthermore, the advantageous potential of farnesol-containing facial masks for UVB-caused sunburnt skin was evaluated. AIMS: Thus, the objectives of this study are to design and prepare optimal facial masks possessing collagen production and smoothness-enhancing capabilities for the skin. METHODS: A series of formulations consisting of hydroxypropyl methylcellulose, hyaluronan, and farnesol were used to prepare the facial masks. The effects of the facial masks on collagen production by skin fibroblasts in vitro were examined. The effects of the prepared masks on collagen synthesis, smoothness, and inflammation of the skin were further evaluated in vivo using two modes (mask administration interspersed with UVB exposure and mask administration after UVB exposure) of a rat model. RESULTS: Facial masks containing both 0.3 and 0.8 mM farnesol improved skin smoothness and enhanced collagen content and arrangement in the skin of rats with mask administration interspersed with and after UVB exposure. The masks containing 0.8 mM farnesol exerted the greatest effects on collagen production/arrangement and smoothness improvement in vivo model. Histopathologically observed inflammation was alleviated, and interleukin (IL)-6 was decreased in the 0.8 mM farnesol-containing facial mask-covered skin compared with that without facial masks. CONCLUSIONS: The farnesol-containing facial masks prepared in this study may have collagen production-increasing, smoothness-improving, and anti-inflammatory properties for UVB-caused sunburn; thus, farnesol is potentially a beneficial component in facial masks.


Subject(s)
Cosmeceuticals/administration & dosage , Farnesol/administration & dosage , Skin Aging/drug effects , Skin/drug effects , Sunburn/drug therapy , Animals , Cell Line , Cosmeceuticals/chemistry , Disease Models, Animal , Face , Farnesol/chemistry , Female , Fibroblasts , Gels , Humans , Hyaluronic Acid/administration & dosage , Hyaluronic Acid/chemistry , Hypromellose Derivatives/administration & dosage , Hypromellose Derivatives/chemistry , Mice , Rats , Skin/radiation effects , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects
12.
Int J Mol Sci ; 20(16)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434227

ABSTRACT

Astaxanthin (Asta) has been demonstrated to possess anti-inflammatory, antitumor, and free radical-clearing activities. However, the poor stability and low water solubility of Asta hamper its bioavailability. The objectives of this study were to fabricate Asta-loaded liposomes (Asta-lipo) and investigate the therapeutic effects of Asta-lipo on alcoholic liver fibrosis in mice. The mice were administered with Asta-lipo or liposomes alone prior to a 3-week dose containing 30% alcohol with or without feeding with a second dose of 30% alcohol. The prepared Asta-lipo of 225.0 ± 58.3 nm in diameter, had an encapsulation efficiency of 98%. A slow release profile of 16.2% Asta from Asta-lipo was observed after a 24-h incubation. Restorative actions against alcoholic liver fibrosis were observed after oral administration of Asta-lipo for 4 weeks. Hepatic repair, followed by a second dose of 30% alcohol, suggested that Asta-lipo exerted protective and reparative effects against liver injuries induced by repeated consumption of alcohol. The changes of serum ALT and AST values were principally in consistence with the histopathologic findings. Asta-lipo exerted rapid and direct effects against repeated alcohol-induced liver disease, whereas Asta-lipo given orally could boost recovery from liver injuries obtained due to previous long-term alcohol use. These data demonstrate that Asta-lipo has applicable protective and therapeutic potential to treat alcohol-induced liver diseases.


Subject(s)
Liver Cirrhosis/drug therapy , Alcohols/toxicity , Animals , Cell Cycle/drug effects , Cell Survival/drug effects , Drug Delivery Systems/methods , Injections, Intraperitoneal , Liposomes/metabolism , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL , Xanthophylls/chemistry , Xanthophylls/therapeutic use
13.
Mater Sci Eng C Mater Biol Appl ; 102: 22-33, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31146993

ABSTRACT

Angiogenesis refers to blood vessel formation through endothelial cell migration and proliferation. Angiogenesis is crucial and beneficial for wound healing and tissue regeneration. In the current study, we prepared porous collagen and collagen/hyaluronan (Col/HA) scaffolds composed of collagen (7 mg/mL) and hyaluronan (HA) (0.5 w%, 1 w%, and 1.5 w%) as culture vehicles for coculture of human adipose-derived stem cells (hADSCs) and human umbilical vein endothelial cells (HUVECs). These scaffolds were combined with low-intensity pulsed ultrasound (LIPUS) to investigate and evaluate angiogenesis in the coculture cell/scaffold constructs in vitro and in vivo. Scaffold porosity decreased (from 74.4% to 60.7%) and readily degraded after addition of various ratios of HA. The porous scaffolds all had high water content (~98%) and similar mechanical properties. The hADSCs alone and hADSCs cocultured with HUVECs exhibited stable proliferative profiles on the Col/HA scaffolds; furthermore, LIPUS significantly enhanced cell growth on the collagen and Col/0.5HA scaffolds by approximately 1.85- and 1.5-fold, respectively, compared with the cells that did not receive LIPUS treatment. In vivo immunohistochemistry results indicated stronger immunofluorescent CD31 presence and vascular endothelial cadherin messenger RNA expression in the hADSCs/HUVECs coculture/scaffold implantation in rats that received LIPUS treatment compared with those that received no such treatment. Our results demonstrated that the hADSCs/HUVECs cocultured on fabricated collagen and Col/HA scaffolds combined with LIPUS treatment had angiogenesis-promoting capability and therapeutic potential when angiogenesis is demanded.


Subject(s)
Adipose Tissue/cytology , Angiogenesis Inducing Agents/pharmacology , Collagen/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Hyaluronic Acid/pharmacology , Stem Cells/cytology , Tissue Scaffolds/chemistry , Ultrasonic Waves , Animals , Biomarkers/metabolism , Cell Proliferation/drug effects , Humans , Male , Rats, Sprague-Dawley , Stem Cells/drug effects
14.
Burns ; 45(5): 1139-1151, 2019 08.
Article in English | MEDLINE | ID: mdl-30833099

ABSTRACT

Third-degree or full-thickness burns refer to lesions that extend to the epidermis, dermis, and subcutaneous tissue. The pathophysiology of burn wounds is characterized by tissue inflammation, edema, and hypertrophic scarring. Farnesol is a natural 15-carbon organic compound that possesses many biological effects. We have previously demonstrated that farnesol gel exerts restorative actions on ultraviolet B (UVB)-caused sunburn in vivo. The in vitro results revealed that liposomal farnesol from 0.04mM to 0.8mM significantly enhanced collagen production by murine skin fibroblasts, whereas liposomal farnesol at high (0.8mM) and low concentration (0.04mM) did not show any suppressions on skin fibroblast proliferation. We treated third-degree burns on a rat model with a formulated gel composed of various ratios of 2% hydroxypropyl methylcellulose (HPMC) and 4mM liposomal farnesol for 7 and 14 days. On days 7 and 14 post wounding, histopathological observations revealed that the HPMC:farnesol gel ratios of 1:2 and 2:1 exerted the greatest tissue-repairing effects on the skin after third-degree burns compared with skin untreated or treated with a commercial burn gel and HPMC alone. These findings were consistent with the in vivo quantitative collagen-producing assay, wound healing scoring, and IL-6 Western blot results. These findings demonstrated that the fabricated liposomal farnesol gel is potentially able to promote wound healing after third-degree burns.


Subject(s)
Burns/pathology , Collagen/drug effects , Farnesol/pharmacology , Skin/pathology , Wound Healing/drug effects , Animals , Burns/metabolism , Collagen/metabolism , Farnesol/administration & dosage , Hypromellose Derivatives , Interleukin-6/metabolism , Liposomes/ultrastructure , Microscopy, Electron, Transmission , Rats
15.
Phytomedicine ; 55: 165-171, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30668426

ABSTRACT

BACKGROUND: Previously, we found that (-)-epigallocatechin-3-gallate (EGCG) enhanced osteogenic differentiation of murine bone marrow mesenchymal stem cells by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and eventually mineralization. We further found EGCG supplementation preserved bone mass and microarchitecture in female rats during estrogen deficiency in the proximal tibia and lumbar spine at least in part by increasing bone morphogenetic protein-2 (BMP2). BMP2 can enhance de novo bone formation. PURPOSE: In this study, we evaluate the effect of local EGCG application in de novo bone formation in bone defect healing. METHODS: Twenty-four rats aged 4 months were weight-matched and randomly allocated to 2 groups: defect control with vehicle treatment (control) and defect with 10 µM EGCG treatment (EGCG). Daily vehicle and EGCG were applied locally by percutaneous local injection 2 days after defect creation for 2 weeks. Four weeks after treatment, animals were sacrificed for micro-computed tomography (µ-CT) and biomechanical analysis. RESULTS: Local EGCG at femoral defect can enhance de novo bone formation by increasing bone volume and subsequently improve mechanical properties including max load, break point, stiffness, area under the max load curve, area under the break point curve and ultimate stress. CONCLUSIONS: Local EGCG may enhance bone defect healing via at least partly by the de novo bone formation of BMP-2.


Subject(s)
Catechin/analogs & derivatives , Femur/drug effects , Wound Healing/drug effects , Animals , Biomechanical Phenomena , Bone Density Conservation Agents/pharmacology , Bone Morphogenetic Protein 2/metabolism , Catechin/pharmacology , Femur/diagnostic imaging , Femur/injuries , Male , Rats, Sprague-Dawley , X-Ray Microtomography
16.
Molecules ; 23(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563251

ABSTRACT

Osteoporosis is the second most-prevalent epidemiologic disease in the aging population worldwide. Cross-sectional and retrospective evidence indicates that tea consumption can mitigate bone loss and reduce risk of osteoporotic fractures. Tea polyphenols enhance osteoblastogenesis and suppress osteoclastogenesis in vitro. Previously, we showed that (-)-epigallocatechin-3-gallate (EGCG), one of the green tea polyphenols, increased osteogenic differentiation of murine bone marrow mesenchymal stem cells (BMSCs) by increasing the mRNA expression of osteogenesis-related genes, alkaline phosphatase activity and, eventually, mineralization. We also found that EGCG could mitigate bone loss and improve bone microarchitecture in ovariectomy-induced osteopenic rats, as well as enhancing bone defect healing partially via bone morphogenetic protein 2 (BMP2). The present study investigated the effects of EGCG in human BMSCs. We found that EGCG, at concentrations of both 1 and 10 µmol/L, can increase mRNA expression of BMP2, Runx2, alkaline phosphatase (ALP), osteonectin and osteocalcin 48 h after treatment. EGCG increased ALP activity both 7 and 14 days after treatment. Furthermore, EGCG can also enhance mineralization two weeks after treatment. EGCG without antioxidants also can enhance mineralization. In conclusion, EGCG can increase mRNA expression of BMP2 and subsequent osteogenic-related genes including Runx2, ALP, osteonectin and osteocalcin. EGCG further increased ALP activity and mineralization. Loss of antioxidant activity can still enhance mineralization of human BMSCs (hBMSCs).


Subject(s)
Antioxidants/pharmacology , Catechin/analogs & derivatives , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Catechin/pharmacology , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Mesenchymal Stem Cells/drug effects
17.
Molecules ; 23(4)2018 Mar 22.
Article in English | MEDLINE | ID: mdl-29565318

ABSTRACT

Astaxanthin (Asta), a xanthophyll carotenoid, has been reported to be a strong antioxidative agent and has anti-inflammatory, antitumor and free radical-scavenging activities. However, inadequate stability and water solubility results in its low bioavailability. This study incorporated Asta into hydrophilic hyaluronan nanoparticles (HAn) to produce Asta-HAn aggregates (AHAna) using an electrostatic field system and investigated the restorative effects of AHAna on retrorsine-CCl4-induced liver fibrosis in rats in vivo. Transmission electron microscopy (TEM) revealed that the prepared HAn were approximately 15 ± 2.1 nm in diameter and after the incorporation of Asta into HAn, the size increased to 210-500 nm. The incorporation efficiency of Asta was approximately 93% and approximately 54% of Asta was released after incubation for 18 h. Significant reductions in alanine aminotransferase and aspartate aminotransferase levels were observed after the rats were intraperitoneally injected with AHAna. Histopathological findings revealed the greatest reduction in hepatic fibrosis and hepatocyte necrosis in the rats after 2 weeks of intraperitoneal injection with AHAna, which is consistent with the data acquired from serum biochemical analysis. The restorative effects on liver damage displayed by AHAna in vivo demonstrated that Asta aggregated through HAn incorporation exerts therapeutic effects on liver fibrosis and necrosis.


Subject(s)
Carbon Tetrachloride/toxicity , Hyaluronic Acid/therapeutic use , Liver Cirrhosis/chemically induced , Necrosis/chemically induced , Pyrrolizidine Alkaloids/toxicity , Animals , Hyaluronic Acid/chemistry , Liver Diseases/metabolism , Male , Rats , Xanthophylls/chemistry , Xanthophylls/therapeutic use
18.
Environ Toxicol ; 33(4): 488-507, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29380558

ABSTRACT

Farnesol, a natural 15-carbon organic compound, has various microbiological and cellular activities. It has been found to exert apoptosis-inducing effects against carcinoma cells as well as antiallergic and anti-inflammatory effects in vivo. In the current study, a series of formulations composed of various concentrations of hydroxypropyl methylcellulose (HPMC) with the addition of hyaluronan (HA) and xanthan gum (XG) was designed to evaluate the UVB-screening and H2 O2 -eliminating effects of farnesol in normal fibroblasts. Farnesol at 0.005, 0.0075, and 0.01% exhibited significant capacity for H2 O2 scavenging; at 0.0025%, it showed insignificant effects. Under 120-min UVB exposure, screening with plural gel composed of 0.0025% farnesol, 0.5% HA, and 0.5% XG containing 1.5% or 2% HPMC retained normal fibroblast viability. After 60-min exposure to UVB, screening with plural gel composed of farnesol, HA, XG, and 0.5%, 1.0%, 1.5%, or 2% HPMC decreased the ratio of the G1 phase and increased ratio of the S phase in comparison with the accumulated cell cycle of the normal fibroblasts without screening. The gel with 2% HPMC displayed the strongest cell cycle-reversal ability. In vivo histopathological results showed that the prepared plural gels with 0.5% or 2% HPMC and farnesol, HA, and XG had greater antiphotoaging and reparative effects against UVB-induced changes and damage in the skin. In conclusion, the current in vitro and in vivo results demonstrated that the prepared plural composed of 0.0025% farnesol, 0.5% HA, 0.5% XG, and 2% HPMC possessed the greatest UVB-screening capacity and the strongest restorative effects on UVB-induced sunburned skin.


Subject(s)
Farnesol/therapeutic use , Sunburn/drug therapy , Cell Cycle/drug effects , Fibroblasts/drug effects , Fibroblasts/pathology , Hyaluronic Acid , Hydrogen Peroxide/toxicity , Hypromellose Derivatives , Polysaccharides, Bacterial , Skin/drug effects , Skin/pathology , Sunburn/pathology , Sunscreening Agents , Ultraviolet Rays
19.
Acta Biomater ; 63: 261-273, 2017 11.
Article in English | MEDLINE | ID: mdl-28941653

ABSTRACT

Volvox sphere is a biomimetic concept of a natural Volvox, wherein a large outer sphere contains smaller inner spheres, which can encapsulate cells and provide a double-layer three-dimensional environment for culturing cells. This study simultaneously encapsulated rat mesenchymal stem cells (MSCs) and AML12 hepatocytes in volvox spheres and extensively evaluated the effects of various culturing modes on cell functions and fates. The results showed that compared with a static flask culture, MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin (ALB) expression and a 2.5-fold increase in cytokeratin 18 expression in a dynamic bioreactor. Moreover, the restorative effects of volvox spheres encapsulating cells on retrorsine-exposed CCl4-induced liver injuries in rats were evaluated. The data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of the new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl4. Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury. STATEMENT OF SIGNIFICANCE: In this study, we used a volvox sphere, which is a unique design that mimics the natural Volvox, that consists of a large outer sphere that contains smaller inner spheres, which provide a three-dimensional environment to culture cells. The purpose of this study is to co-culture mesenchymal stem cells (MSCs) and AML12 liver cells in volvox spheres and evaluate two different culture methods, dynamic bioreactor and static culture flask,on the cultured cells. In addition, we aimed to evaluate the restorative effects of volvox spheres encapsulating MSCs and/or AML12 liver cells on rats with retrorsine-exposed CCl4-induced liver injuries. The results showed that MSCs encapsulated in volvox spheres differentiated into hepatocyte-like cells with a 2-fold increase in albumin expression and a 2.5-fold increase in cytokeratin 18 expression ina dynamic bioreactor. Moreover, the data presented significant reductions in AST and ALT levels after the implantation of volvox spheres encapsulating both MSCs and AML12 hepatocytes in vivo. In contrast to the negative control group, histopathological analysis demonstrated liver repair and formation of new liver tissue in groups implanted with volvox spheres containing cells. These results demonstrate that liver cells implanted with volvox spheres encapsulating both MSCs and AML12 hepatocytes promote liver repair and liver tissue regeneration in liver failure caused by necrotizing agents such as retrorsine and CCl4. Hence, volvox spheres encapsulating MSCs and liver cells can be a promising and clinically effective therapy for liver injury.


Subject(s)
Coculture Techniques/methods , Liver/physiology , Tissue Engineering/methods , Volvox/chemistry , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cell Differentiation , Cell Survival , Fluorescence , Implants, Experimental , Keratin-18/metabolism , Liver/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Staining and Labeling
20.
3 Biotech ; 7(1): 3, 2017 May.
Article in English | MEDLINE | ID: mdl-28389897

ABSTRACT

Ribosome-inactivating proteins (RIPs) are a group of enzymes originally isolated from plants that possess the ability to damage ribosomes in an irreversible manner, leading to inhibition of protein synthesis in eukaryotic cells. In this study, we aimed to purify recombinant RIPs, investigate their function in the treatment of bacterial infection, and determine their toxicity in mice. We employed a pMAL protein fusion and purification system using E. coli transformed with a plasmid containing MBP-tagged MAP30 cDNA. MBP-tagged MAP30 was purified using a modified novel protocol to effectively produce highly active MAP30 of high purity. In an acute toxicity study in mice, no mortality occurred at doses lower than 1.25 mg/kg. MAP30 at both 0.42 and 0.14 mg/kg induced anti-MAP30 IgG, which reached a maximum titer at week 3. In conclusion, recombinant MAP30 prepared using our purification method possesses bioactivity, and has a synergistic bacteria-killing effect that can significantly reduce the required dosages of chloramphenicol and erythromycin. Therefore, when MAP30 is used in combination with chloramphenicol or erythromycin, it may of benefit in terms of reducing the side effects of the antibiotics, as lower concentrations of antibiotics are required.

SELECTION OF CITATIONS
SEARCH DETAIL
...