Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Org Chem ; 89(11): 8243-8248, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38753315

ABSTRACT

Herein we have pioneered an innovative synthetic strategy for the efficient assembly of various heteroarene-condensed benzofuran derivatives, utilizing benzofuran-derived azadienes (BDAs) and quinolines as the starting materials. This method functions with transition-metal catalysis and uses cost-effective formic acid as the reducing agent. Mechanistic investigations indicate that this transformation would involve a [4 + 2] annulation cascade process. This approach demonstrates a high tolerance to various functional groups and yields excellent results.

2.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731462

ABSTRACT

A novel and efficient method for functionalizing organosulfones has been established, utilizing a visible-light-driven intermolecular radical cascade cyclization of α-allyl-ß-ketosulfones. This process employs fac-Ir(ppy)3 as the photoredox catalyst and α-carbonyl alkyl bromide as the oxidizing agent. Via this approach, the substrates experience intermolecular addition of α-carbonyl alkyl radicals to the alkene bonds, initiating a sequence of C-C bond formations that culminate in the production of organosulfone derivatives. Notably, this technique features gentle reaction conditions and an exceptional compatibility with a wide array of functional groups, making it a versatile and valuable addition to the field of organic synthesis.

3.
Org Biomol Chem ; 21(20): 4191-4194, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37132390

ABSTRACT

Fused furans are commonly found units in natural products and medicinal molecules, and methods for their introduction are of fundamental importance. Here we report one-pot cycloadditions of ethynyl indoloxazolidones with 1,3-cyclohexanediones enabled by copper catalysis, leading to a series of functionalized furan derivatives in good yields. This method features mild reaction conditions, high efficiency, and wide substrate scope.

4.
Chem Commun (Camb) ; 59(23): 3463-3466, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36872868

ABSTRACT

Heterocyclic Quaternary Phosphonium Salts (HQPS) have emerged as promising chemicals for organic synthesis and medicinal chemistry. However, the present synthetic methodology of this type of compound is still limited. Here, we report a deconstructive reorganization strategy based on Brønsted acid-mediated tandem 1,4 addition/intramolecular cyclization of triphenylphosphine derivatives and in situ generated o-AQMs for the first time. This protocol provides a novel approach to heterocyclic quaternary phosphonium salts. The method also features a non-metal catalyst, mild reaction conditions, high efficiency and wide substrate scope. Moreover, a series of obtained heterocyclic phosphonium salts can be converted to isotopically labelled 2-benzofuran compounds directly by simple deuteration reactions.

5.
J Org Chem ; 87(21): 14093-14102, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36281070

ABSTRACT

The visible-light-promoted difunctionalization of alkenyl ketones has been developed for easy access of various tetralones, cyclopropane, or alkenyl migration compounds. With fac-[Ir(ppy)3] as the photocatalyst, alkenyl ketones captured the α-carbonyl alkyl radical and evolved through intramolecular cyclization and the elimination of a proton to give the difunctionalized products. This strategy is characterized by good yields, mild reaction conditions, and outstanding functional group tolerance.

6.
Oxid Med Cell Longev ; 2022: 5121496, 2022.
Article in English | MEDLINE | ID: mdl-36187337

ABSTRACT

Background: Fecal microbiota transplantation (FMT) has been found to be effective in irritable bowel syndrome with predominant diarrhea (IBS-D). We conducted this study to determine the impact of a low FODMAP diet (LFD) on the gut microbiota and the efficacy of FMT in the treatment of IBS-D. Methods: A retrospective analysis of a single-arm open-label prospective study was conducted to investigate the impact of FMT alone (n = 40) and FMT+LFD (n = 40) in refractory IBS-D. The IBS-quality of life (QOL), IBS-severity scoring system (SSS), gastrointestinal symptom rating scale (GSRS), Hamilton anxiety scale (HAMA), and Hamilton depression scale (HAMD) were used to evaluate the efficacy, and partial 16S rDNA amplicon sequencing was used to profile the microbiota. Results: The response rates were higher in the FMT+LFD group than in the FMT group (1 mo, 3 mo, 6 mo: 70.0% vs. 55.0%, 67.5% vs. 57.5%, 62.5% vs. 27.5%, respectively). The FMT+LFD group showed significantly better improvement in IBS-QOL at 1, 3, and 6 months; IBS-SSS at 6 months; and GSRS at 1 month compared to FMT alone. Changes in HAMA and HAMD were similar in the two groups. The LFD significantly upregulated the FMT-induced microbial diversity (OTUs: 666 vs. 574, Adonis: P = 0.02) and significantly strengthened the upregulation of Bacteroides, Alistipes, and Ruminococcaceae_UCG-002 and the downregulation of Bifidobacterium. Conclusion: An LFD enhanced the efficacy of FMT, increased the gut microbial diversity after FMT, and strengthened the inhibitory effect of FMT on conditional pathogens.


Subject(s)
Gastrointestinal Diseases , Irritable Bowel Syndrome , DNA, Ribosomal , Diarrhea/therapy , Diet , Fecal Microbiota Transplantation , Feces/microbiology , Humans , Irritable Bowel Syndrome/therapy , Prospective Studies , Quality of Life , Retrospective Studies
7.
Front Microbiol ; 13: 873018, 2022.
Article in English | MEDLINE | ID: mdl-35814647

ABSTRACT

Adaptive immune response to the gut microbiota is one of the main drivers of inflammatory bowel disease (IBD). Under inflammatory conditions, immunoglobulin (Ig)-targeted bacteria are altered. However, changes in Ig-targeted bacteria in Asian patients with IBD with ulcerative colitis (UC) remain unclear. Furthermore, changes in IgA-targeted bacteria in patients with UC treated with fecal microbiota transplantation (FMT) are unclear. Here, we analyzed fecal samples of patients with IBD and patients with UC before and after FMT by flow cytometry. We found that the percentage of IgA/G-coated bacteria can be used to assess the severity of IBD. Besides oral pharyngeal bacteria such as Streptococcus, we hypothesized that Megamonas, Acinetobacter, and, especially, Staphylococcus might play an important role in IBD pathogenesis. Moreover, we evaluated the influence of FMT on IgA-coated bacteria in patients with UC. We found that IgA-bacterial interactions were re-established in human FMT recipients and resembled those in the healthy fecal donors. Additionally, the IgA targeting was not influenced by delivery methods: gastroscopy spraying and colonic transendoscopic enteral tubing (TET). Then, we established an acute dextran sulfate sodium (DSS)-induced mouse model to explore whether FMT intervention would impact IgA/G memory B cell in the intestine. We found that after FMT, both IgA/G memory B cell and the percentage of IgA/G-targeted bacteria were restored to normal levels in DSS mice.

8.
Front Psychiatry ; 13: 695481, 2022.
Article in English | MEDLINE | ID: mdl-35370847

ABSTRACT

Asperger syndrome (AS) is a chronic neurodevelopmental disorder. Although all of the clinically diagnosed cases display normal intelligence and speech functions, barriers in social interaction and communication seriously affect mental health and psychological function. In addition to traditional psychological/behavioral training and symptomatic medication, in-depth studies of intestinal microbiota and mental health have indicated that probiotics (e.g., Lactobacillus rhamnosus) can effectively reduce the occurrence of AS. Fecal microbiota transplantation (FMT) is a type of biological therapy that involves the transplant of intestinal microbiota from healthy donors into the patient's gastrointestinal tract to improve the gut microenvironment. In this case report, we describe the first case of adult AS treated with FMT. The patient suffered from diarrhea-predominant irritable bowel syndrome for 6 years with symptoms of diarrhea and abdominal pain. After three rounds of FMT, the diarrhea and abdominal pain were significantly improved. Moreover, the symptoms of AS were also significantly ameliorated. We found that FMT changed the structure of the intestinal microbiota as well as the patient's serum metabolites, and these changes were consistent with the patient's symptoms. The metabolites may affect signaling pathways, as revealed by Kyoto Encyclopedia of Genes and Genomes enrichment analysis. The changes in microbial metabolites following FMT may affect other regions (e.g., the nervous system) via the circulatory system, such that the bacteria-gut-blood-brain axis may be the means through which FMT mitigates AS.

9.
BMC Gastroenterol ; 22(1): 117, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35272614

ABSTRACT

BACKGROUND: Studies investigating the changes in short-chain fatty acids (SCFAs) in patients with ulcerative colitis (UC) have yielded inconsistent results. We performed a meta-analysis of studies that investigated the alterations in different SCFAs among UC patients to assess their role in the development of UC. METHODS: Three databases were searched for relevant studies published as of April 2021. Results are presented as standardized mean difference (SMD) with 95% confidence interval (95% CI). RESULTS: Eleven studies were included in the meta-analysis. Compared to healthy subjects, UC patients had significantly lower concentrations of total SCFAs (SMD = - 0.88, 95%CI - 1.44, - 0.33; P < 0.001), acetate (SMD = - 0.54, 95% CI - 0.91, - 0.17; P = 0.004), propionate, (SMD = - 0.37, 95% CI - 0.66, - 0.07; P = 0.016), and valerate (SMD = - 0.91, 95% CI - 1.45, - 0.38; P < 0.001). On subgroup analysis based on disease status, patients with active UC had reduced concentrations of acetate (SMD = - 1.83, 95% CI - 3.32, - 0.35; P = 0.015), propionate (SMD = - 2.51, 95% CI - 4.41, - 0.61; P = 0.009), and valerate (SMD = - 0.91, 95% CI - 1.45, - 0.38; P < 0.001), while UC patients in remission had similar concentrations with healthy subjects. Patients with active UC had lower butyrate level (SMD = - 2.09, 95% CI - 3.56, - 0.62; P = 0.005) while UC patients in remission had higher butyrate level (SMD = 0.71, 95% CI 0.33, 1.10; P < 0.001) compared with healthy subjects. CONCLUSION: UC patients had significantly decreased concentrations of total SCFAs, acetate, propionate, and valerate compared with healthy subjects. In addition, inconsistent changes of certain special SCFAs were observed in UC patients with different disease status.


Subject(s)
Colitis, Ulcerative , Butyrates , Fatty Acids, Volatile , Healthy Volunteers , Humans , Propionates
10.
Chem Commun (Camb) ; 58(14): 2347-2350, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35080215

ABSTRACT

One common iridium(III) complex was employed to facilely prepare ultrafine Ir nanoclusters embedded in porous N-doped carbon, which displayed significant bifunctional activity for both hydrogen evolution and hydrazine oxidation under alkaline conditions, enabling energy-efficient hydrogen production.

11.
BMC Microbiol ; 21(1): 279, 2021 10 16.
Article in English | MEDLINE | ID: mdl-34654370

ABSTRACT

BACKGROUND: Dextran sulfate sodium (DSS) replicates ulcerative colitis (UC)-like colitis in murine models. However, the microbial characteristics of DSS-triggered colitis require further clarification. To analyze the changes in gut microbiota associated with DSS-induced acute and chronic colitis. METHODS: Acute colitis was induced in mice by administering 3% DSS for 1 week in the drinking water, and chronic colitis was induced by supplementing drinking water with 2.5% DSS every other week for 5 weeks. Control groups received the same drinking water without DSS supplementation. The histopathological score and length of the colons, and disease activity index (DAI) were evaluated to confirm the presence of experimental colitis. Intestinal microbiota was profiled by 16S rDNA sequencing of cecal content. RESULTS: Mice with both acute and chronic DSS-triggered colitis had significantly higher DAI and colon histopathological scores in contrast to the control groups (P < 0.0001, P < 0.0001), and the colon was remarkably shortened (P < 0.0001, P < 0.0001). The gut microbiota α-diversity was partly downregulated in both acute and chronic colitis groups in contrast to their respective control groups (Pielou index P = 0.0022, P = 0.0649; Shannon index P = 0.0022, P = 0.0931). The reduction in the Pielou and Shannon indices were more obvious in mice with acute colitis (P = 0.0022, P = 0.0043). The relative abundance of Bacteroides and Turicibacter was increased (all P < 0.05), while that of Lachnospiraceae, Ruminococcaceae, Ruminiclostridium, Rikenella, Alistipes, Alloprevotella, and Butyricicoccus was significantly decreased after acute DSS induction (all P < 0.05). The relative abundance of Bacteroides, Akkermansia, Helicobacter, Parabacteroides, Erysipelatoclostridium, Turicibacter and Romboutsia was also markedly increased (all P < 0.05), and that of Lachnospiraceae_NK4A136_group, Alistipes, Enterorhabdus, Prevotellaceae_UCG-001, Butyricicoccus, Ruminiclostridium_6, Muribaculum, Ruminococcaceae_NK4A214_group, Family_XIII_UCG-001 and Flavonifractor was significantly decreased after chronic DSS induction (all P < 0.05). CONCLUSION: DSS-induced acute and chronic colitis demonstrated similar symptoms and histopathological changes. The changes in the gut microbiota of the acute colitis model were closer to that observed in UC. The acute colitis model had greater abundance of SCFAs-producing bacteria and lower α-diversity compared to the chronic colitis model.


Subject(s)
Biodiversity , Colitis/chemically induced , Colitis/microbiology , Dextran Sulfate , Gastrointestinal Microbiome/physiology , Acute Disease , Animals , Chronic Disease , Colitis/pathology , Disease Models, Animal , Mice
13.
Chem Asian J ; 16(18): 2618-2621, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34342941

ABSTRACT

Visible-light-driven sulfonylation/cyclization of N-methacryloyl-2-phenylbenzoimidazoles has been successfully developed. Using commercially available sulfonyl chloride as sulfonylation reagent, a wide range of sulfonylated benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-ones with potential antitumor activity were provided in acceptable to excellent yields. This method has the advantages of mild reaction conditions and outstanding functional group tolerance, and provides a new strategy for the development of potential antitumor lead compounds.

14.
Front Microbiol ; 12: 658292, 2021.
Article in English | MEDLINE | ID: mdl-33912150

ABSTRACT

Fecal microbiota transplantation (FMT) can inhibit the progression of ulcerative colitis (UC). However, how FMT modulates the gut microbiota and which biomarker is valuable for evaluating the efficacy of FMT have not been clarified. This study aimed to determine the changes in the gut microbiota and their relationship with butyric acid following FMT for UC. Fecal microbiota (FM) was isolated from healthy individuals or mice and transplanted into 12 UC patients or colitis mice induced by dextran sulfate sodium (DSS). Their clinical colitis severities were monitored. Their gut microbiota were analyzed by 16S sequencing and bioinformatics. The levels of fecal short-chain fatty acids (SCFAs) from five UC patients with recurrent symptoms after FMT and individual mice were quantified by liquid chromatography-mass spectrometry (LC-MS). The impact of butyric acid on the abundance and diversity of the gut microbiota was tested in vitro. The effect of the combination of butyric acid-producing bacterium and FMT on the clinical responses of 45 UC patients was retrospectively analyzed. Compared with that in the controls, the FMT significantly increased the abundance of butyric acid-producing bacteria and fecal butyric acid levels in UC patients. The FMT significantly increased the α-diversity, changed gut microbial structure, and elevated fecal butyric acid levels in colitis mice. Anaerobic culture with butyrate significantly increased the α-diversity of the gut microbiota from colitis mice and changed their structure. FMT combination with Clostridium butyricum-containing probiotics significantly prolonged the UC remission in the clinic. Therefore, fecal butyric acid level may be a biomarker for evaluating the efficacy of FMT for UC, and addition of butyrate-producing bacteria may prolong the therapeutic effect of FMT on UC by changing the gut microbiota.

15.
Biomed Res Int ; 2021: 4192451, 2021.
Article in English | MEDLINE | ID: mdl-33506015

ABSTRACT

METHODS: Colitis was induced in mice using 2,4,6-trinitrobenzene-sulfonic acid (TNBS), and mice were subsequently treated with either a PD-1 inhibitor or 5-amino-salicylic acid (ASA) as a positive control. Body weight, disease activity index (DAI), colon length, and tissue damage were evaluated, and the enteric microbiota was profiled using high-throughput 16S rRNA sequencing of fecal samples from the experimental mice. RESULTS: TNBS caused mice to experience IBD-like symptoms, which were attenuated by the PD-1 inhibitor, as indicated by a decrease in DAI scores (p = 0.0002). Furthermore, in this mouse model of IBD, PD-1 inhibition improved the alpha diversity as well as restored the beta diversity of the enteric microbiome. It also significantly enriched the abundance of short-chain fatty acid- (SCFA-) producing bacteria of the Firmicutes (p < 0.05) and Bacteroidetes (p < 0.05) phyla but depopulated Proteobacteria (p < 0.05). CONCLUSION: PD-1 inhibition can partly mitigate TNBS-induced colitis and restore the enteric microbiota by enriching the abundance of SCFA-producing bacteria.


Subject(s)
Colitis/metabolism , Colitis/microbiology , Gastrointestinal Microbiome/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Protective Agents/pharmacology , Animals , Colitis/chemically induced , Colon/drug effects , Colon/pathology , Disease Models, Animal , Immune Checkpoint Inhibitors/pharmacology , Male , Mesalamine/pharmacology , Mice , Mice, Inbred BALB C , Trinitrobenzenesulfonic Acid/adverse effects
16.
Gastroenterol Res Pract ; 2021: 6699268, 2021.
Article in English | MEDLINE | ID: mdl-33510784

ABSTRACT

Gut dysbacteriosis is closely related to various intestinal and extraintestinal diseases. Fecal microbiota transplantation (FMT) is a biological therapy that entails transferring the gut microbiota from healthy individuals to patients in order to reconstruct the intestinal microflora in the latter. It has been proved to be an effective treatment for recurrent Clostridium difficile infection. Studies show that the gut microbiota plays an important role in the pathophysiology of neurological and psychiatric disorders through the microbiota-gut-brain axis. Therefore, reconstruction of the healthy gut microbiota is a promising new strategy for treating cerebral diseases. We have reviewed the latest research on the role of gut microbiota in different nervous system diseases as well as FMT in the context of its application in neurological, psychiatric, and other nervous system-related diseases (Parkinson's disease, Alzheimer's disease, multiple sclerosis, epilepsy, autism spectrum disorder, bipolar disorder, hepatic encephalopathy, neuropathic pain, etc.).

17.
Appl Microbiol Biotechnol ; 105(4): 1669-1681, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33511441

ABSTRACT

The gut microbiota is closely related to host health and disease. However, there are no suitable animal models available at present for exploring its functions. We analyzed the effect of 3 different antibiotic cocktails (ABx) via two administration routes on the composition of murine gut microbiota, as well as on the general physiological and metabolic indices. High-throughput 16S rRNA sequencing showed that ABx treatment altered the gut microbiota community structure, and also caused low-degree inflammation in the colon. In addition, ad libitum administration of antibiotics depleted the gut microbiota more effectively compared to direct oral gavage, especially with 3ABx. The ABx treatment also had a significant impact on renal and liver functions, as indicated by the altered serum levels of creatinine, urea, total triglycerides, and total cholesterol. Finally, Spearman's correlation analysis showed that the predominant bacterial genera resulting from ABx intervention, including Lactobacillus, Roseburia, and Candidatus-Saccharimonas, were negatively correlated with renal function indices. Taken together, different antibiotic combinations and interventions deplete the gut microbiota and induce physiological changes in the host. Our findings provide the basis for developing an adaptive animal model for studying gut microbiota. KEY POINTS: • Ad libitum administration of 3ABx can effectively deplete intestinal microbiota. • ABx treatment may have slight effect on renal and liver function. • The levels of urea and creatinine correlated with the growth of Roseburia.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Lactobacillus , Mice , RNA, Ribosomal, 16S/genetics
18.
RSC Adv ; 11(47): 29372-29375, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-35479569

ABSTRACT

A visible-light-driven cascade radical cyclization process of N-methacryloyl-2-phenylbenzimidazole has been established with α-carbonyl alkyl bromide. This protocol provides an efficient and practical method for the synthesis of various α-carbonyl alkyl-substituted benzimidazo[2,1-α]isoquinolin-6(5H)-ones in outstanding yields, mild reaction conditions and excellent functional group tolerance.

19.
World J Gastroenterol ; 26(16): 1901-1911, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32390701

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disorder with steadily increasing incidence rates worldwide, especially in the West. There are no drugs available at present to treat NAFLD, and the primary therapeutic options include weight loss and the combination of healthy diet and exercise. Therefore, novel interventions are required that can target the underlying risk factors. Gut microbiota is an "invisible organ" of the human body and vital for normal metabolism and immuno-modulation. The number and diversity of microbes differ across the gastrointestinal tract from the mouth to the anus, and is most abundant in the intestine. Since dysregulated gut microbiota is an underlying pathological factor of NAFLD, it is a viable therapeutic target that can be modulated by antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and microbial metabolites. In this review, we summarize the most recent advances in gut microbiota-targeted therapies against NAFLD in clinical and experimental studies, and critically evaluate novel targets and strategies for treating NAFLD.


Subject(s)
Dysbiosis/therapy , Fecal Microbiota Transplantation , Gastrointestinal Microbiome/immunology , Non-alcoholic Fatty Liver Disease/therapy , Probiotics/administration & dosage , Animals , Anti-Bacterial Agents/administration & dosage , Clinical Trials as Topic , Combined Modality Therapy/methods , Disease Models, Animal , Dysbiosis/complications , Dysbiosis/immunology , Dysbiosis/microbiology , Gastrointestinal Microbiome/drug effects , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/microbiology , Prebiotics/administration & dosage , Synbiotics/administration & dosage , Treatment Outcome
20.
Exp Ther Med ; 19(4): 2650-2660, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32256746

ABSTRACT

Ulcerative colitis (UC) is a complex chronic pathological condition of the gut in which microbiota targeted treatment, such as fecal microbiota transplantation (FMT), has shown an encouraging effect. The aim of the present study was to investigate the efficacy and safety of FMT in patients with mild or moderate UC. A single-center, open-label study was designed, including 47 patients with mild or moderate active UC who received three treatments of fresh FMT via colonic transendoscopic enteral tubing within 1 week. The inflammatory bowel disease questionnaire, partial Mayo scores, colonoscopy, erythrocyte sedimentation rate, C-reactive protein level and procalcitoin values were used to assess the efficacy of FMT and alteration in gut microbiota was detected by 16S ribosomal RNA-sequencing. Before FMT, microbiota Faecalibacterium prausnitzii (F. prausnitzii) levels were significantly decreased in patients with UC compared with healthy donors (P<0.01). At 4 weeks post-FMT, F. prausnitzii levels were significantly increased (P<0.05), and the Mayo score was significantly decreased (1.91±1.07 at baseline vs. 4.02±1.47 at week 4; P<0.001) in patients with UC compared with healthy donors. Steroid-free clinical responses were reported in 37 patients (84.1%), and steroid-free clinical remission was achieved in 31 patients (70.5%) at week 4 post-FMT, however, steroid-free remission was not achieved in any patient. No adverse events were reported in 41 (93.2%) patients after FMT or during the 12-week follow-up. Shannon's diversity index and Chao1 estimator were also improved in patients with UC receiving FMT. In conclusion, the results of the present study suggested that FMT resulted in clinical remission in patients with mild to moderate UC, and that the remission may be associated with significant alterations to the intestinal microbiota of patients with UC. Furthermore, F. prausnitzii may serve as a diagnostic and therapeutic biomarker for the use of FMT in UC.

SELECTION OF CITATIONS
SEARCH DETAIL
...