Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 18(1): 117, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926871

ABSTRACT

In this study, the corrosion behavior of N80 and TP125V steels was delved firstly into produced water from shale gas fields containing CO2-O2. Moreover, the localized corrosion of these steels was investigated to elucidate the effects of aerobic and anoxic on steel corrosion. The results indicated that the corrosion rates of N80 and TP125V steels under aerobic conditions were lower compared to those in the presence of CO2-O2. Specifically, at temperature of 100 °C and with dissolved oxygen (DO) concentration of 4 mg/L in the CO2-O2 environment, the N80 and TP125V steels exhibited the highest corrosion rate, with values of 0.13 mm/y and 0.16 mm/y, respectively, as determined by specific weight loss measurements. Conversely, these rates decreased to 0.022 mm/y and 0.049 mm/y under aerobic conditions. Furthermore, severe localized corrosion of N80 and TP125V steels with a DO concentration of 4 mg/L was also observed in the CO2-O2 environment. Finally, it was evident that pitting corrosion is the predominant type of corrosion affecting N80 and TP125V steels in the produced water from shale gas fields.

2.
ACS Omega ; 5(15): 8463-8473, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32337407

ABSTRACT

Hydrocarbon dew point (HCDP) is one of the most important quality specifications of natural gas. Measuring and predicting the HCDP accurately are essential for the natural gas industry. However, the comprehensive experimental HCDP curve data are still rare, and knowledge about adopting proper prediction models remains unclear. In view of this, HCDP determination work by use of an improved test system and model evaluation based on more than 1000 dew points data have been done to improve the aforementioned dilemma. HCDP curve data of three gravimetrically prepared synthetic natural gases (SNGs) and one real gas (RG) are determined first. Then, one set of data containing 712 dew points from 28 SNGs and 334 dew points from 14 RGs is used to evaluate the performance of eight different HCDP prediction models including Soave-Redlich-Kwong (SRK), SRK-Twu, Peng-Robinson (PR), Twu-Sim-Tassone (TST), predictive SRK (PSRK), GERG-2008, PSRK, and perturbed-chain statistical associating fluid theory (PC-SAFT) models. Considerable prediction deviation of these models in the high-pressure region (pressure above 6.0 MPa) is observed compared to that in the low-pressure region (under 6.0 MPa), and the reasons for that difference are discussed. Evaluation results reveal that among the eight prediction models, GERG-2008 has the best performance (overall average absolute deviation (AAD): 1.44 °C) for SNGs, and PSRK and SRK-Twu fits the experimental data best for RGs (overall AAD: 2.50 °C). Therefore, GERG-2008 is recommended for HCDP prediction of relatively lean gas, whereas PSRK and SRK-Twu are recommended for calculating the HCDP of relatively heavy natural gases in low-pressure and high-pressure regions, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...