Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Am J Surg ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38755026

ABSTRACT

BACKGROUND: Vessels encapsulating tumor clusters (VETC) pattern of hepatocellular carcinoma (HCC) are associated with unfavorable prognosis. This study aimed to establish a nomogram model to predict VETC patterns based on preoperative CT imaging features. PATIENTS AND METHODS: Patients who underwent surgical resection between January 1, 2016 and August 31, 2022 were retrospectively included. Predictors associated with VETC pattern were determined by using logistic regression analyses, and a nomogram model was constructed. Prognostic factors associated with recurrence-free survival (RFS) after surgical resection were identified by using Cox regression analyses. RESULTS: A total of 84 patients were included for CT analysis. All patients underwent radical surgical resection. AST/ALT >1.07(odds ratio [OR], 4.91; 95 â€‹% CI: 1.11, 21.68; P â€‹< â€‹0.05), intratumoral necrosis (OR, 4.99; 95 â€‹% CI: 1.25, 19.99; P â€‹< â€‹0.05) and enhancing capsule (OR, 3.32; 95 â€‹% CI: 1.27, 8.94; P â€‹< â€‹0.05) were independent predictors of VETC pattern. These features were used for the construction of nomogram model, which showed comparable prediction performance, with AUC value of 0.767 (95%CI [0.662, 0.852]). CK19 status (Hazard ratio [HR], 2.02; 95 â€‹% CI: 1.06, 3.86; P â€‹< â€‹0.05), the number of tumors (HR, 3.31; 95 â€‹% CI: 1.47, 7.45; P â€‹< â€‹0.05) and VETC pattern (HR, 2.52; 95 â€‹% CI: 1.31, 4.86; P â€‹< â€‹0.05) were independent predictors of postoperative RFS. CONCLUSION: A nomogram model based on preoperative CT imaging features could be used for the characterization of VETC pattern, and has prognostic significance for postoperative RFS in patients with HCC.

2.
Adv Mater ; : e2403097, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753369

ABSTRACT

Rechargeable Zinc-iodine batteries (ZIBs) are gaining attention as energy storage devices due to their high energy density, low-cost, and inherent safety. However, the poor cycling performance of these batteries always arises from the severe leakage and shuttle effect of polyiodides (I3 - and I5 -). Herein, a novel cationic pyridine-rich covalent triazine framework (CCTF-TPMB) is developed to capture and confine iodine (I2) species via strong electrostatic interaction, making it an attractive host for I2 in ZIBs. The as-fabricated ZIBs with I2 loaded CCTF-TPMB (I2@CCTF-TPMB) cathode achieve a large specific capacity of 243 mAh g-1 at 0.2 A g-1 and an exceptionally stable cyclic performance, retaining 93.9% of its capacity over 30 000 cycles at 5 A g-1. The excellent electrochemical performance of the ZIBs can be attributed to the pyridine-rich cationic sites of CCTF-TPMB, which effectively suppress the leakage and shuttle of polyiodides, while also accelerating the conversion reaction of I2 species. Combined in situ Raman and UV-vis analysis, along with theoretical calculations, clearly reveal the critical role played by pyridine-rich cationic sites in boosting the ZIBs performances. This work opens up a promising pathway for designing advanced I2 cathode materials toward next-generation ZIBs and beyond.

3.
Angew Chem Int Ed Engl ; : e202407975, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818660

ABSTRACT

The bonding effects between 3d transition-metal single sites and supports originate from crystal field stabilization energy (CFSE). The 3d transition-metal atoms of the spontaneous geometrical distortions, that is the Jahn-Teller effect, can alter CFSE, thereby leading to the Irving-Williams series. However, engineering single-atom sites (SASs) using the Irving-Williams series as an ideal guideline has not been reported to date. Herein, alkynyl-linked covalent phenanthroline frameworks (CPFs) with phenanthroline units are developed to anchor the desired 3d single metal ions from d5 to d10 (Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+). The Irving-Williams series was employed to accurately predict the bonding effects between 3d transition-metal atoms and phenanthroline units. To verify this, theoretical calculations and experimental results reveal that Cu-SASs/CPFs exhibits higher stability and faster charge-transfer efficiency, far surpassing other metal-SASs/CPFs. As expected, Cu-SASs/CPFs demonstrates a high photoreduction of CO2-to-CO activity (~30.3 µmol·g-1·h-1) and an exceptional photooxidation of CH3CHO-to-CH3COOH activity (~24.7 µmol·g-1·h-1). Interestingly, the generated *O2- is derived from the process of CO2 reduction, thereby triggering a CH3CHO oxidation reaction. This work provides a novel design concept for designing SASs by the Irving-Williams to regulate the catalytic performances.

4.
J Am Chem Soc ; 146(20): 14357-14367, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726589

ABSTRACT

Introducing dynamic behavior into periodic frameworks has borne fruit in the form of flexible porous crystals. The detailed molecular design of frameworks in order to control their collective dynamics is of particular interest, for example, to achieve stimulus-induced behavior. Herein, by varying the degree of rigidity of ditopic pillar linkers, two isostructural flexible metal-organic frameworks (MOFs) with common rigid supermolecular building bilayers were constructed. The subtle substitution of single (in bibenzyl-4,4'-dicarboxylic acid; H2BBDC) with double (in 4,4'-stilbenedicarboxylic acid; H2SDC) C-C bonds in pillared linkers led to markedly different flexible behavior of these two MOFs. Upon the removal of guest molecules, both frameworks clearly show reversible single-crystal-to-single-crystal transformations involving the cis-trans conformation change and a resulting swing of the corresponding pillar linkers, which gives rise to Flex-Cd-MOF-1a and Flex-Cd-MOF-2a, respectively. Strikingly, a more favorable gas-induced dynamic behavior in Flex-Cd-MOF-2a was verified in detail by stepwise C3H6/C3H8 sorption isotherms and the corresponding in situ powder X-ray diffraction experiments. These insights are strongly supported by molecular modeling studies on the sorption mechanism that explores the sorption landscape. Furthermore, a consistency between the macroscopic elasticity and microscopic flexibility of Flex-Cd-MOF-2 was observed. This work fuels a growing interest in developing MOFs with desired chemomechanical functions and presents detailed insights into the origins of flexible MOFs.

5.
J Colloid Interface Sci ; 670: 509-518, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38776686

ABSTRACT

Large amount of polyethylene terephthalate (PET) plastics waster and emerging contaminants in water, including fluoroquinolone antibiotics, pose challenges to human survival. In this work, a green synthesis scheme is proposed in which the defective UiO-66 (d-UiO-66) is fabricated via a solvent-free routine by using PET plastics waster as raw materials for lomefloxacin (LOM) removal. In comparison with defect-free UiO-66, the created defect imparts d-UiO-66 with higher porosity and abundant defective Zr sites, which are beneficial to boost LOM adsorption. As expected, d-UiO-66 exhibited excellent LOM adsorption performances, showcasing a saturation adsorption capacity of 588 mg g-1 and a kinetic rate constant of 0.204 g mg-1 h-1, which are 3.5 and 2.0 times higher than those of the pristine UiO-66, respectively. Remarkably, the LOM saturation adsorption capacity of d-UiO-66 surpasses that of all reported adsorbents. Mechanism study reveals that this outstanding adsorption performance of d-UiO-66 is mainly ascribed to the abundant defective sites, high porosity, together with the strong hydrogen bonding interaction and π-π stacking interaction between d-UiO-66 and LOM. Therefore, the d-UiO-66 obtained by the solvent-free method can not only effectively upcycle PET plastic waster, but also efficiently remove LOM, demonstrating a potential routine to simultaneous address the solid PET waster and wastewater.

6.
J Gastrointest Surg ; 28(4): 442-450, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583894

ABSTRACT

BACKGROUND: Vessels encapsulating tumor clusters (VETC) is a novel vascular pattern distinct from microvascular invasion that is significantly associated with poor prognosis in patients with hepatocellular carcinoma (HCC). This study aimed to predict the VETC pattern and prognosis of patients with HCC based on preoperative gadolinium-ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) magnetic resonance imaging (MRI). METHODS: Patients with HCC who underwent surgical resection and preoperative Gd-EOB-DTPA MRI between January 1, 2016 and August 31, 2022 were retrospectively included. The variables associated with VETC were evaluated using logistic regression. A nomogram model was constructed on the basis of independent risk factors. COX regression was used to determine the variables associated with recurrence-free survival (RFS). RESULTS: A total of 98 patients with HCC were retrospectively included. Peritumoral hypointensity on the hepatobiliary phase (HBP) (odd ratio [OR], 2.58; 95% CI, 1.05-6.33; P = .04), tumor-to-liver signal intensity ratio on HBP of ≤0.75 (OR, 27.80; 95% CI, 1.53-502.91; P = .02), and tumor-to-liver apparent diffusion coefficient ratio of ≤1.23 (OR, 4.65; 95% CI, 1.01-21.38; P = .04) were independent predictors of VETC pattern. A nomogram was constructed by combining the aforementioned 3 significant variables. The accuracy, sensitivity, and specificity were 69.79%, 71.74%, and 68.00%, respectively, with an area under the receiver operating characteristic curve of 0.75 (95% CI, 0.65-0.83). The variables significantly associated with RFS of patients with HCC after surgery were Barcelona Clinic Liver Cancer stage (hazard ratio [HR], 2.15; 95% CI, 1.09-4.22; P = .03) and VETC pattern (HR, 2.28; 95% CI, 1.29-4.02; P = .004). CONCLUSION: The preoperative imaging features based on Gd-EOB-DTPA MRI can be used to predict the VETC pattern, which has prognostic significance for postoperative RFS of patients with HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/blood supply , Gadolinium , Retrospective Studies , Contrast Media , Gadolinium DTPA , Prognosis , Magnetic Resonance Imaging/methods
7.
Polymers (Basel) ; 16(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675065

ABSTRACT

To address the dilemma of the stiffness and toughness properties of high-density polyethylene (HDPE) composites, titanate coupling agent-treated CaCO3 nanoparticles (nano-CaCO3) and ethylene-octene copolymer (POE) were utilized to blend with HDPE to prepare ternary nanocomposites via a two-sequence-step process. Meanwhile, a one-step process was also studied as a control. The obtained ternary nanocomposites were characterized by scanning electron microscopy (SEM), Advanced Rheometrics Expansion System (ARES), Dynamic Mechanical Analysis (DMA), wide-angle X-ray diffraction analysis (WXRD), and mechanical test. The SEM results showed one or two CaCO3 nanoparticles were well-encapsulated by POE and were uniformly dispersed into the HDPE matrix to form a core-shell structure of 100-200 nm in size by the two-step process, while CaCO3 nanoparticles were aggregated in the HDPE matrix by the one-step method. The result of the XRD showed that the nano-CaCO3 particle played a role in promoting crystallization in HDPE nanocomposites. Mechanical tests showed that the synergistic effect of both the POE elastomer and CaCO3 nanoparticles should account for the balanced performance of the ternary composites. In comparison with neat HDPE, the notched impact toughness of the ternary nanocomposites of HDPE/POE/nano-CaCO3 was significantly increased. In addition, the core-shell structure absorbed the fracture impact energy and prevent further propagation of micro-cracks, thus obtaining a higher notched Izod impact strength.

8.
Clin Transl Oncol ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523240

ABSTRACT

BACKGROUND: Studies have suggested that vessels encapsulating tumor clusters (VETC) is a strong predictor of prognosis in patients with hepatocellular carcinoma (HCC). METHODS: A systematic search was conducted in PubMed, Embase, Web of Science, and Scopus databases. Overall survival (OS) and tumor efficacy (TE) were two outcome measures used to evaluate the relationship between VETC and HCC prognosis. Hazard ratios (HR) and their 95% confidence intervals (CI) were used. RESULTS: Thirteen studies with 4429 patients were included in the meta-analysis. The results showed that VETC was significantly associated with both OS (HR 2.00; 95% CI 1.64-2.45) and TE (HR 1.70; 95% CI 1.44-1.99) in HCC patients. Furthermore, recurrence-free survival (RFS) was a stronger indicator of tumor efficacy (HR 1.73; 95% CI 1.44-2.07) than disease-free survival (DFS) (HR 1.69; 95% CI 1.22-2.35). This suggests that VETC-positive HCC has a higher risk of recurrence and a lower survival rate. CONCLUSION: In conclusion, the meta-analysis suggests that VETC is a significant predictor of overall survival and tumor efficacy in HCC patients and may be a valid prognostic indicator.

9.
ACS Cent Sci ; 10(2): 426-438, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38435531

ABSTRACT

There is an urgent need for highly efficient sorbents capable of selectively removing 99TcO4- from concentrated alkaline nuclear wastes, which has long been a significant challenge. In this study, we present the design and synthesis of a high-performance adsorbent, CPN-3 (CPN denotes cationic polymeric nanotrap), which achieves excellent 99TcO4- capture under strong alkaline conditions by incorporating branched alkyl chains on the N3 position of imidazolium units and optimizing the framework anion density within the pores of a cationic polymeric nanotrap. CPN-3 features exceptional stability in harsh alkaline and radioactive environments as well as exhibits fast kinetics, high adsorption capacity, and outstanding selectivity with full reusability and great potential for the cost-effective removal of 99TcO4-/ReO4- from contaminated water. Notably, CPN-3 marks a record-high adsorption capacity of 1052 mg/g for ReO4- after treatment with 1 M NaOH aqueous solutions for 24 h and demonstrates a rapid removal rate for 99TcO4- from simulated Hanford and Savannah River Site waste streams. The mechanisms for the superior alkaline stability and 99TcO4- capture performances of CPN-3 are investigated through combined experimental and computational studies. This work suggests an alternative perspective for designing functional materials to address nuclear waste management.

10.
Angew Chem Int Ed Engl ; 63(15): e202401770, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38361043

ABSTRACT

High-purity octafluoropropane (C3F8) electronic specialty gas is a key chemical raw material in semiconductor and integrated circuit manufacturing industry, while selective removal of hexafluoropropylene (C3F6) impurity for C3F8 purification is essential but a challenging task. Here we report a fluorinated cage-like MOF Zn-bzc-CF3 (bzc=5-(trifluoromethyl)-1H-pyrazole-4-carboxylic acid) for C3F6/C3F8 separation. The incorporation of -CF3 groups not only provides suitable pore aperture size for highly efficient size-exclusive C3F6/C3F8 separation, but also creates hydrophobic microenvironments, endowing Zn-bz-CF3 high chemical stability. Remarkably, Zn-bzc-CF3 exhibits high C3F6 adsorption capacity while excluding C3F8, achieving ideal molecular-sieving C3F6/C3F8 separation. Breakthrough experiments show that Zn-bzc-CF3 can efficiently separate C3F6/C3F8 mixture and high-purity C3F8 (99.9 %) can be obtained.

11.
Nat Commun ; 15(1): 1459, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368421

ABSTRACT

Here, four MOFs, namely Sc-TBAPy, Al-TBAPy, Y-TBAPy, and Fe-TBAPy (TBAPy: 1,3,6,8-tetrakis(p-benzoic acid)pyrene), were characterized and evaluated for their ability to remediate glyphosate (GP) from water. Among these materials, Sc-TBAPy demonstrates superior performance in both the adsorption and degradation of GP. Upon light irradiation for 5 min, Sc-TBAPy completely degrades 100% of GP in a 1.5 mM aqueous solution. Femtosecond transient absorption spectroscopy reveals that Sc-TBAPy exhibits enhanced charge transfer character compared to the other MOFs, as well as suppressed formation of emissive excimers that could impede photocatalysis. This finding was further supported by hydrogen evolution half-reaction (HER) experiments, which demonstrated Sc-TBAPy's superior catalytic activity for water splitting. In addition to its faster adsorption and more efficient photodegradation of GP, Sc-TBAPy also followed a selective pathway towards the oxidation of GP, avoiding the formation of toxic aminomethylphosphonic acid observed with the other M3+-TBAPy MOFs. To investigate the selectivity observed with Sc-TBAPy, electron spin resonance, depleted oxygen conditions, and solvent exchange with D2O were employed to elucidate the role of different reactive oxygen species on GP photodegradation. The findings indicate that singlet oxygen (1O2) plays a critical role in the selective photodegradation pathway achieved by Sc-TBAPy.

12.
Chem Commun (Camb) ; 59(88): 13183-13186, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37850377

ABSTRACT

A metal-organic-framework-based ion trap was designed via tailoring linker functionality as well as free -COOH density. The mixed-linker UiO-66-H2/H4 exhibits higher adsorption for Li+ ions than H4-free UiO-66-H2 because the H4 linker provides an additional -COOH group in the local region.

14.
J Colloid Interface Sci ; 650(Pt A): 836-845, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37450972

ABSTRACT

In order to alleviate the pressure on the ecological environment and human health caused by wastewater of nitroimidazole antibiotics and poly(ethylene terephthalate) (PET) plastic waste, we propose a strategy of using defective MIL-68(Al) (d-MIL-68(Al)) derived from waste PET plastic for dimetridazole (DMZ) capture. The resulting d-MIL-68(Al) exhibits an excellent adsorption capacity of 555.6 mg g-1, which is three times of pristine MIL-68(Al) (181.8 mg g-1), demonstrating that the defective structures in d-MIL-68(Al) play a crucial role in the adsorption process. Remarkably, d-MIL-68(Al) can remove nearly 97% of DMZ in the first 10 s, and the removal efficiency reached 99% after adsorption equilibrium, affording a record kinetic rate constant k2 (2.84 g mg-1 min-1). In short, d-MIL-68(Al) possesses both an ultrafast adsorption rate and outstanding adsorption capacity toward DMZ compared with reported adsorbents. Mechanism analysis reveals that the excellent DMZ adsorption performances can be ascribed to the abundant active sites caused by defective structures, as well as the π-π stacking and hydrogen bonding interactions between MOF and DMZ. Hence, d-MIL-68(Al) derived from waste PET plastic is an efficient porous adsorbent for rapid DMZ removal, which not only possesses great potential for wastewater treatment, but also reduces the harmful PET plastic waste, reflecting the concept of sustainable development.


Subject(s)
Metal-Organic Frameworks , Nitroimidazoles , Water Pollutants, Chemical , Humans , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Water Pollutants, Chemical/chemistry , Wastewater , Dimetridazole , Adsorption
15.
Int J Biol Macromol ; 248: 125981, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37499725

ABSTRACT

Seaweeds account for half of global mariculture and have become a key player in bio-based industries. Seaweed process typically starts with hot water blanching that helps reduce postharvest quality deterioration but also generates large amounts of hydrothermal waste. This study aims to explore the feasibility of isolating water-soluble biopolymers from seaweed hydrothermal waste and their potential applications. Using Saccharina japonica (formerly Laminaria japonica) blanching water as example, 2.9 g/L of polymeric substances were efficiently isolated by ultrafiltration, implying biopolymer coproduction potential of ~5.8 kt from blanching wastewater of current kelp industry. Physicochemical characterizations revealed polysaccharidic nature of the biopolymers, with high contents of fucose, uronic acids and sulfate, showing distinct but also overlapping structural features with hot water-extracted kelp polysaccharides. The main fraction of the blanching water polymers after anion exchange chromatography was acidic polysaccharide, the major backbone residues of which were (1-4) linked mannopyranose, (1-4) linked gulopyranose and (1-2) linked fucopyranose while the branched residues were primarily 1,3,4-, 1,2,4- and 1,4,6-linked hexoses but also 1,3,4-fucopyranose. Furthermore, the polysaccharides were found to have a good compatibility in cosmetic creams with added cohesiveness and freshness, demonstrating the application potential of such natural biopolymers from currently underexplored seaweed blanching water.


Subject(s)
Kelp , Laminaria , Seaweed , Water , Polysaccharides/chemistry , Seaweed/chemistry , Laminaria/chemistry
16.
J Am Chem Soc ; 145(25): 13730-13741, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37338458

ABSTRACT

The removal of organophosphorus (OP) herbicides from water has been studied using adsorptive removal, chemical oxidation, electrooxidation, enzymatic degradation, and photodegradation. The OP herbicide glyphosate (GP) is one of the most used herbicides worldwide, leading to excess GP in wastewater and soil. GP is commonly broken down in environmental conditions to compounds such as aminomethylphosphonic acid (AMPA) or sarcosine, with AMPA having a longer half-life and similar toxicity to GP. Metal-organic frameworks (MOFs) are excellent materials for purifying OP herbicides from water due to their ability to combine adsorption and photoactivity within one material. Herein, we report the use of a robust Zr-based MOF with a meta-carborane carboxylate ligand (mCB-MOF-2) to examine the adsorption and photodegradation of GP. The maximum adsorption capacity of mCB-MOF-2 for GP was determined to be 11.4 mmol/g. Non-covalent intermolecular forces between the carborane-based ligand and GP within the micropores of mCB-MOF-2 are thought to be responsible for strong binding affinity and capture of GP. After 24 h of irradiation with ultraviolet-visible (UV-vis) light, mCB-MOF-2 selectively converts 69% of GP to sarcosine and orthophosphate, following the C-P lyase enzymatic pathway and biomimetically photodegrading GP. Circumventing the production of AMPA is desirable, as it has a longer half-life and similar toxicity to GP. The exceptional adsorption capacity of GP by mCB-MOF-2 and its biomimetic photodegradation to non-toxic sarcosine make it a promising material for removing OP herbicides from water.

17.
Angew Chem Int Ed Engl ; 62(32): e202303262, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37259616

ABSTRACT

Highly adjustable photonic modules were constructed based on the heterostructures crystals of a new series of donor-acceptor metal-organic framework (D-A MOF) featuring highly tunable thermally activated delayed fluorescence (TADF). By introducing N-phenylcarbazole and derivatives as donor guests into the acceptor host NKU-111, highly tunable through-space charge transfer based TADF could be achieved through the engineering of heavy atom effect, which result in modulatable emission wavelength (540 to 600 nm) and enhanced quantum yield (up to 30.86 %). Furthermore, by rationally integrating the D-A MOFs with distinctive emissions, rod-like heterostructures crystals featuring excitation position dependent tip emissions in wide wavelength range (495 to 598 nm) could be fabricated, which could serve as highly potential photonic modules for photonic circuit applications.

18.
Genes Genomics ; 45(8): 1063-1071, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37301775

ABSTRACT

BACKGROUND: The Antarctic krill, Euphausia superba (E. superba), is a key organism in the Antarctic marine ecosystem and has been widely studied. However, there is a lack of transcriptome data focusing on temperature responses. METHODS: In this study, we performed transcriptome sequencing of E. superba samples exposed to three different temperatures: -1.19 °C (low temperature, LT), - 0.37 °C (medium temperature, MT), and 3 °C (high temperature, HT). RESULTS: Illumina sequencing generated 772,109,224 clean reads from the three temperature groups. In total, 1,623, 142, and 842 genes were differentially expressed in MT versus LT, HT versus LT, and HT versus MT, respectively. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that these differentially expressed genes were mainly involved in the Hippo signaling pathway, MAPK signaling pathway, and Toll-like receptor signaling pathway. Quantitative reverse-transcription PCR revealed that ESG037073 expression was significantly upregulated in the MT group compared with the LT group, and ESG037998 expression was significantly higher in the HT group than in the LT group. CONCLUSIONS: This is the first transcriptome analysis of E. superba exposed to three different temperatures. Our results provide valuable resources for further studies on the molecular mechanisms underlying temperature adaptation in E. superba.


Subject(s)
Euphausiacea , Animals , Temperature , Euphausiacea/genetics , Euphausiacea/metabolism , Ecosystem , Gene Expression Profiling , Transcriptome
19.
Eur J Pharmacol ; 954: 175853, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37329975

ABSTRACT

Cisplatin, or DDP, is a highly successful and well-known chemotherapy drug used to treat cancer. Acquired resistance to chemotherapy is a major clinical concern, yet the mechanisms of this resistance are still unknown. Ferroptosis is a type of cell death distinct from other forms, fueled by a buildup of iron-associated lipid reactive oxygen species (ROS). Gaining insight into the process of ferroptosis could lead to novel treatments for overcoming cancer resistance. In this study, the combination of isoorientin (IO) and DDP treatment resulted in a significant decrease in the viability of drug-resistant cells, a substantial increase in intracellular iron, malondialdehyde (MDA) and ROS concentrations, a notable decrease in glutathione concentration, and the occurrence of ferroptosis in cells, as revealed by in vitro and in vivo experiments. Additionally, there was a decrease in the expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2), glutathione peroxidase 4 (GPX4), and sirtuin 6 (SIRT6) proteins, and an increase in cellular ferroptosis. Isoorientin acts as a mediator to regulate cellular ferroptosis and reverse drug resistance in lung cancer cells by controlling the SIRT6/Nrf2/GPX4 signaling pathway. The findings of this study suggest that IO can promote ferroptosis and reverse drug resistance in lung cancer through the SIRT6/Nrf2/GPX4 signaling pathway, thus offering a theoretical basis for its potential clinical application.


Subject(s)
Ferroptosis , Lung Neoplasms , Sirtuins , Humans , NF-E2-Related Factor 2 , Reactive Oxygen Species , Signal Transduction , Drug Resistance, Neoplasm , Glycosyltransferases , Lung Neoplasms/drug therapy , Iron
20.
Small ; 19(22): e2300821, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36869658

ABSTRACT

The pore dimension and surface property directly dictate the transport of guests, endowing diverse gas selective adsorptions to porous materials. It is highly relevant to construct metal-organic frameworks (MOFs) with designable functional groups that can achieve feasible pore regulation to improve their separation performances. However, the role of functionalization in different positions or degrees within framework on the separation of light hydrocarbon has rarely been emphasized. In this context, four isoreticular MOFs (TKL-104-107) bearing dissimilar fluorination are rationally screened out and afforded intriguing differences in the adsorption behavior of C2 H6 and C2 H4 . Ortho-fluoridation of carboxyl allows TKL-105-107 to exhibit enhanced structural stabilities, impressive C2 H6 adsorption capacities (>125 cm3 g-1 ) and desirable inverse selectivities (C2 H6 over C2 H4 ). The more modified ortho-fluorine group and meta-fluorine group of carboxyl have improved the C2 H6 /C2 H4 selectivity and adsorption capacity, respectively, and the C2 H6 /C2 H4 separation potential can be well optimized via linker fine-fluorination. Meanwhile, dynamic breakthrough experiments proved that TKL-105-107 can be used as highly efficient C2 H6 -selective adsorbents for C2 H4 purification. This work highlights that the purposeful functionalization of pore surfaces facilitates the assembly of highly efficient MOF adsorbents for specific gas separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...