Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nat Plants ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997433

ABSTRACT

Rice is one of the most important staple food and model species in plant biology, yet its quantitative proteomes are largely uncharacterized. Here we quantify the relative protein levels of over 15,000 genes across major rice tissues using a tandem mass tag strategy followed by intensive fractionation and mass spectrometry. We identify tissue-specific and tissue-enriched proteins that are linked to the functional specificity of individual tissues. Proteogenomic comparison of rice and Arabidopsis reveals conserved proteome expression, which differs from mammals in that there is a strong separation of species rather than tissues. Notably, profiling of N6-methyladenosine (m6A) across the rice major tissues shows that m6A at untranslated regions is negatively correlated with protein abundance and contributes to the discordance between RNA and protein levels. We also demonstrate that our data are valuable for identifying novel genes required for regulating m6A methylation. Taken together, this study provides a paradigm for further research into rice proteogenome.

2.
EMBO J ; 42(13): e113033, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36896912

ABSTRACT

Mitophagy is a fundamental quality control mechanism of mitochondria. Its regulatory mechanisms and pathological implications remain poorly understood. Here, via a mitochondria-targeted genetic screen, we found that knockout (KO) of FBXL4, a mitochondrial disease gene, hyperactivates mitophagy at basal conditions. Subsequent counter screen revealed that FBXL4-KO hyperactivates mitophagy via two mitophagy receptors BNIP3 and NIX. We determined that FBXL4 functions as an integral outer-membrane protein that forms an SCF-FBXL4 ubiquitin E3 ligase complex. SCF-FBXL4 ubiquitinates BNIP3 and NIX to target them for degradation. Pathogenic FBXL4 mutations disrupt SCF-FBXL4 assembly and impair substrate degradation. Fbxl4-/- mice exhibit elevated BNIP3 and NIX proteins, hyperactive mitophagy, and perinatal lethality. Importantly, knockout of either Bnip3 or Nix rescues metabolic derangements and viability of the Fbxl4-/- mice. Together, beyond identifying SCF-FBXL4 as a novel mitochondrial ubiquitin E3 ligase restraining basal mitophagy, our results reveal hyperactivated mitophagy as a cause of mitochondrial disease and suggest therapeutic strategies.


Subject(s)
Mitochondrial Diseases , Mitophagy , Mice , Animals , Mitophagy/physiology , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 120(2): e2215449120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36595691

ABSTRACT

Fluid clearance mediated by lymphatic vessels is known to be essential for lung inflation and gas-exchange function during the transition from prenatal to postnatal life, yet the molecular mechanisms that regulate lymphatic function remain unclear. Here, we profiled the molecular features of lymphatic endothelial cells (LECs) in embryonic and postnatal day (P) 0 lungs by single-cell RNA-sequencing analysis. We identified that the expression of c-JUN is transiently upregulated in P0 LECs. Conditional knockout of Jun in LECs impairs the opening of lung lymphatic vessels at birth, leading to fluid retention in the lungs and neonatal death. We further demonstrated that increased mechanical pressure induces the expression of c-JUN in LECs. c-JUN regulates the opening of lymphatic vessels by modulating the remodeling of the actin cytoskeleton in LECs. Our study established the essential regulatory function of c-JUN-mediated transcriptional responses in facilitating lung lymphatic fluid clearance at birth.


Subject(s)
Endothelial Cells , Lymphatic Vessels , Humans , Infant, Newborn , Endothelial Cells/metabolism , Lung/metabolism , Lymphatic Vessels/metabolism
4.
Cell Rep ; 41(10): 111774, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36476853

ABSTRACT

Mitochondrial damage causes mitochondrial DNA (mtDNA) release to activate the type I interferon (IFN-I) response via the cGAS-STING pathway. mtDNA-induced inflammation promotes autoimmune- and aging-related degenerative disorders. However, the global picture of inflammation-inducing mitochondrial damages remains obscure. Here, we have performed a mitochondria-targeted CRISPR knockout screen for regulators of the IFN-I response. Strikingly, our screen reveals dozens of hits enriched with key regulators of cristae architecture, including phospholipid cardiolipin and protein complexes such as OPA1, mitochondrial contact site and cristae organization (MICOS), sorting and assembly machinery (SAM), mitochondrial intermembrane space bridging (MIB), prohibitin (PHB), and the F1Fo-ATP synthase. Disrupting these cristae organizers consistently induces mtDNA release and the STING-dependent IFN-I response. Furthermore, knocking out MTX2, a subunit of the SAM complex whose null mutations cause progeria in humans, induces a robust STING-dependent IFN-I response in mouse liver. Taken together, beyond revealing the central role of cristae architecture to prevent mtDNA release and inflammation, our results mechanistically link mitochondrial cristae disorganization and inflammation, two emerging hallmarks of aging and aging-related degenerative diseases.


Subject(s)
DNA, Mitochondrial , Humans , Animals , Mice , DNA, Mitochondrial/genetics
5.
Nat Commun ; 13(1): 6525, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316343

ABSTRACT

Enteroendocrine cells (EEs) represent a heterogeneous cell population in intestine and exert endocrine functions by secreting a diverse array of neuropeptides. Although many transcription factors (TFs) required for specification of EEs have been identified in both mammals and Drosophila, it is not understood how these TFs work together to generate this considerable subtype diversity. Here we show that EE diversity in adult Drosophila is generated via an "additive hierarchical TF cascade". Specifically, a combination of a master TF, a secondary-level TF and a tertiary-level TF constitute a "TF code" for generating EE diversity. We also discover a high degree of post-specification plasticity of EEs, as changes in the code-including as few as one distinct TF-allow efficient switching of subtype identities. Our study thus reveals a hierarchically-organized TF code that underlies EE diversity and plasticity in Drosophila, which can guide investigations of EEs in mammals and inform their application in medicine.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Enteroendocrine Cells/metabolism , Gene Expression Regulation , Mammals/metabolism
6.
Cell Rep ; 39(7): 110816, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35584682

ABSTRACT

The Qinghai-Tibet Plateau (QTP) harbors hundreds of species well adapted to its extreme conditions, including its low-oxygen (hypoxic) atmosphere. Here, we show that the plateau pika-a keystone mammal of the QTP-lacks robust circadian rhythms. The major form of the plateau pika Epas1 protein includes a 24-residue insert caused by a point mutation at the 5' juncture site of Intron14 and is more stable than other mammalian orthologs. Biochemical studies reveal that an Epas1-Bmal1 complex with lower trans-activation activity occupies the E1/E2 motifs at the promoter of the core-clock gene Per2, thus explaining how an Epas1 mutation-selected in the hypoxic conditions of the QTP-disrupts the molecular clockwork. Importantly, experiments with hypoxic chambers show that mice expressing the plateau pika Epas1 ortholog in their suprachiasmatic nucleus have dysregulated central clocks, and pika Epas1 knockin mice reared in hypoxic conditions exhibit dramatically reduced heart damage compared with wild-type animals.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Circadian Clocks , Lagomorpha , Acclimatization , Animals , Circadian Clocks/genetics , Circadian Rhythm/genetics , Hypoxia/genetics , Hypoxia/metabolism , Lagomorpha/genetics , Lagomorpha/metabolism , Mice , Mutation/genetics
7.
Nature ; 601(7891): 118-124, 2022 01.
Article in English | MEDLINE | ID: mdl-34912121

ABSTRACT

The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.


Subject(s)
Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Fibroblasts/immunology , Skin/immunology , Skin/pathology , Vitiligo/immunology , Vitiligo/pathology , Adolescent , Adult , Animals , CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL10/immunology , Chemokine CXCL9/immunology , Child , Disease Models, Animal , Female , Fibroblasts/pathology , Humans , Interferon-gamma/immunology , Male , Melanocytes/immunology , Melanocytes/pathology , Mice , Middle Aged , Paracrine Communication , RNA-Seq , Single-Cell Analysis , Stromal Cells/immunology , T-Lymphocytes, Cytotoxic/immunology , Young Adult
9.
Curr Biol ; 31(4): 840-852.e5, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33340458

ABSTRACT

In the germarium of the Drosophila ovary, developing germline cysts are surrounded by a population of somatic escort cells that are known to function as the niche cells for germline differentiation;1 however, the underlying molecular mechanisms of this niche function remain poorly understood. Through single-cell gene expression profiling combined with genetic analyses, we here demonstrate that the escort cells can be spatially and functionally divided into two successive domains. The anterior escort cells (aECs) specifically produce ecdysone, which acts on the cystoblast to promote synchronous cell division, whereas the posterior escort cells (pECs) respond to ecdysone signaling and regulate soma-germline cell adhesion to promote the transition from 16-cell cyst-to-egg chamber formation. The patterning of the aEC and pEC domains is independent of the germline but is dependent on JAK/STAT signaling activity, which emanates from the posterior. Thus, a heterogeneous population of escort cells constitutes a stepwise niche environment to orchestrate cystoblast division and differentiation toward egg chamber formation.


Subject(s)
Cysts , Drosophila Proteins , Ecdysone , Animals , Cell Differentiation , Drosophila , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Ecdysone/metabolism , Female , Germ Cells , Ovary , Stem Cells
11.
Plant J ; 103(4): 1503-1515, 2020 08.
Article in English | MEDLINE | ID: mdl-32412137

ABSTRACT

Small interfering RNAs (siRNAs) are responsible for establishing and maintaining DNA methylation through the RNA-directed DNA methylation (RdDM) pathway in plants. Although siRNA biogenesis is well known, it is relatively unclear about how the process is regulated. By a forward genetic screen in Arabidopsis thaliana, we identified a mutant defective in NOT1 and demonstrated that NOT1 is required for transcriptional silencing at RdDM target genomic loci. We demonstrated that NOT1 is required for Pol IV-dependent siRNA accumulation and DNA methylation at a subset of RdDM target genomic loci. Furthermore, we revealed that NOT1 is a constituent of a multi-subunit CCR4-NOT deadenylase complex by immunoprecipitation combined with mass spectrometry and demonstrated that the CCR4-NOT components can function as a whole to mediate chromatin silencing. Therefore, our work establishes that the CCR4-NOT complex regulates the biogenesis of Pol IV-dependent siRNAs, and hence facilitates DNA methylation and transcriptional silencing in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , DNA Methylation , DNA-Directed RNA Polymerases/metabolism , RNA, Small Interfering/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/physiology , DNA-Directed RNA Polymerases/physiology , Repressor Proteins/genetics , Repressor Proteins/physiology , Transcription Factors/physiology
12.
Cell Rep ; 31(8): 107683, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32460025

ABSTRACT

Balanced stem cell self-renewal and differentiation is essential for maintaining tissue homeostasis, but the underlying mechanisms are poorly understood. Here, we identified the transcription factor SRY-related HMG-box (Sox) 100B, which is orthologous to mammalian Sox8/9/10, as a common target and central mediator of the EGFR/Ras and JAK/STAT signaling pathways that coordinates intestinal stem cell (ISC) proliferation and differentiation during both normal epithelial homeostasis and stress-induced intestinal repair in Drosophila. The two stress-responsive pathways directly regulate Sox100B transcription via two separate enhancers. Interestingly, an appropriate level of Sox100B is critical for its function, as its depletion inhibits ISC proliferation via cell cycle arrest, while its overexpression also inhibits ISC proliferation by directly suppressing EGFR expression and additionally promotes ISC differentiation by activating a differentiation-promoting regulatory circuitry composed of Sox100B, Sox21a, and Pdm1. Thus, our study reveals a Sox family transcription factor that functions as a stress-responsive signaling nexus that ultimately controls tissue homeostasis and regeneration.


Subject(s)
Drosophila Proteins/metabolism , Intestines/physiopathology , SOX9 Transcription Factor/metabolism , Animals , Cell Differentiation , Cell Proliferation , Drosophila , Homeostasis , Regeneration
13.
Nature ; 579(7799): 421-426, 2020 03.
Article in English | MEDLINE | ID: mdl-32188939

ABSTRACT

Bioorthogonal chemistry capable of operating in live animals is needed to investigate biological processes such as cell death and immunity. Recent studies have identified a gasdermin family of pore-forming proteins that executes inflammasome-dependent and -independent pyroptosis1-5. Pyroptosis is proinflammatory, but its effect on antitumour immunity is unknown. Here we establish a bioorthogonal chemical system, in which a cancer-imaging probe phenylalanine trifluoroborate (Phe-BF3) that can enter cells desilylates and 'cleaves' a designed linker that contains a silyl ether. This system enabled the controlled release of a drug from an antibody-drug conjugate in mice. When combined with nanoparticle-mediated delivery, desilylation catalysed by Phe-BF3 could release a client protein-including an active gasdermin-from a nanoparticle conjugate, selectively into tumour cells in mice. We applied this bioorthogonal system to gasdermin, which revealed that pyroptosis of less than 15% of tumour cells was sufficient to clear the entire 4T1 mammary tumour graft. The tumour regression was absent in immune-deficient mice or upon T cell depletion, and was correlated with augmented antitumour immune responses. The injection of a reduced, ineffective dose of nanoparticle-conjugated gasdermin along with Phe-BF3 sensitized 4T1 tumours to anti-PD1 therapy. Our bioorthogonal system based on Phe-BF3 desilylation is therefore a powerful tool for chemical biology; our application of this system suggests that pyroptosis-induced inflammation triggers robust antitumour immunity and can synergize with checkpoint blockade.


Subject(s)
Delayed-Action Preparations/administration & dosage , Mammary Neoplasms, Experimental/immunology , Pyroptosis/immunology , Animals , Coumarins/administration & dosage , Coumarins/chemistry , Coumarins/metabolism , Coumarins/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/metabolism , Delayed-Action Preparations/pharmacokinetics , Female , Green Fluorescent Proteins/administration & dosage , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/pharmacokinetics , HeLa Cells , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Immunoconjugates/metabolism , Immunoconjugates/pharmacokinetics , Inflammasomes/immunology , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Oligopeptides/metabolism , Oligopeptides/pharmacokinetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Proteins/administration & dosage , Proteins/chemistry , Proteins/metabolism , Proteins/pharmacokinetics , Silanes/administration & dosage , Silanes/chemistry , Silanes/metabolism , Silanes/pharmacokinetics , T-Lymphocytes/immunology , Trastuzumab/administration & dosage , Trastuzumab/chemistry , Trastuzumab/metabolism , Trastuzumab/pharmacokinetics , Xenograft Model Antitumor Assays
14.
Cell Rep ; 30(6): 1724-1734.e4, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32049006

ABSTRACT

Intestinal stem cells (ISCs) are able to generate gut-specific enterocytes, as well as neural-like enteroendocrine cells. It is unclear how the tissue identity of the ISC lineage is regulated to confer cell-lineage fidelity. Here, we show that, in adult Drosophila midgut, loss of the transcriptional repressor Tramtrack in ISCs causes a self-renewal program switch to neural stem cell (NSC)-like, and that switch drives neuroendocrine tumor development. In Tramtrack-depleted ISCs, the ectopically expressed Deadpan acts as a major self-renewal factor for cell propagation, and Sequoia acts as a differentiation factor for the neuroendocrine phenotype. In addition, the expression of Sequoia renders NSC-specific self-renewal genes responsive to Notch in ISCs, thus inverting the differentiation-promoting function of Notch into a self-renewal role as in normal NSCs. These results suggest an active maintenance mechanism for the gut identity of ISCs, whose disruption may lead to an improper acquisition of NSC-like traits and tumorigenesis.

15.
Elife ; 92020 01 03.
Article in English | MEDLINE | ID: mdl-31898934

ABSTRACT

Metabolites are major biological parameters sensed by many cell types in vivo, whether they function as signaling mediators of SC and niche cross talk to regulate tissue regeneration is largely unknown. We show here that deletion of the Notch pathway co-factor RBP-J specifically in mouse HFSCs triggers adjacent McSCs to precociously differentiate in their shared niche. Transcriptome screen and in vivo functional studies revealed that the elevated level of retinoic acid (RA) caused by de-repression of RA metabolic process genes as a result of RBP-J deletion in HFSCs triggers ectopic McSCs differentiation in the niche. Mechanistically the increased level of RA sensitizes McSCs to differentiation signal KIT-ligand by increasing its c-Kit receptor protein level in vivo. Using genetic approach, we further pinpointed HFSCs as the source of KIT-ligand in the niche. We discover that HFSCs regulate the metabolite RA level in vivo to allow self-renewal of neighboring McSCs.


Subject(s)
Hair Follicle/physiology , Melanocytes/metabolism , Retinoids/metabolism , Stem Cell Niche , Stem Cells/physiology , Animals , Cell Differentiation , Mice , Mice, Transgenic
16.
Cell ; 180(1): 107-121.e17, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31866069

ABSTRACT

Fibrosis can develop in most organs and causes organ failure. The most common type of lung fibrosis is known as idiopathic pulmonary fibrosis, in which fibrosis starts at the lung periphery and then progresses toward the lung center, eventually causing respiratory failure. Little is known about the mechanisms underlying the pathogenesis and periphery-to-center progression of the disease. Here we discovered that loss of Cdc42 function in alveolar stem cells (AT2 cells) causes periphery-to-center progressive lung fibrosis. We further show that Cdc42-null AT2 cells in both post-pneumonectomy and untreated aged mice cannot regenerate new alveoli, resulting in sustained exposure of AT2 cells to elevated mechanical tension. We demonstrate that elevated mechanical tension activates a TGF-ß signaling loop in AT2 cells, which drives the periphery-to-center progression of lung fibrosis. Our study establishes a direct mechanistic link between impaired alveolar regeneration, mechanical tension, and progressive lung fibrosis.


Subject(s)
Adult Stem Cells/metabolism , Idiopathic Pulmonary Fibrosis/etiology , Pulmonary Alveoli/metabolism , Adult Stem Cells/pathology , Aged , Alveolar Epithelial Cells/pathology , Animals , Biomechanical Phenomena/physiology , Female , Fibrosis/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Male , Mice , Middle Aged , Pulmonary Alveoli/pathology , Regeneration , Signal Transduction , Stem Cells/pathology , Stress, Mechanical , Stress, Physiological/physiology , Transforming Growth Factor beta/metabolism , cdc42 GTP-Binding Protein/genetics , cdc42 GTP-Binding Protein/metabolism
17.
Cell Rep ; 29(12): 4172-4185.e5, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851941

ABSTRACT

Enteroendocrine cells (EEs) in the intestinal epithelium have important endocrine functions, yet this cell lineage exhibits great local and regional variations that have hampered detailed characterization of EE subtypes. Through single-cell RNA-sequencing analysis, combined with a collection of peptide hormone and receptor knockin strains, here we provide a comprehensive analysis of cellular diversity, spatial distribution, and transcription factor (TF) code of EEs in adult Drosophila midgut. We identify 10 major EE subtypes that totally produced approximately 14 different classes of hormone peptides. Each EE on average co-produces approximately 2-5 different classes of hormone peptides. Functional screen with subtype-enriched TFs suggests a combinatorial TF code that controls EE cell diversity; class-specific TFs Mirr and Ptx1 respectively define two major classes of EEs, and regional TFs such as Esg, Drm, Exex, and Fer1 further define regional EE identity. Our single-cell data should greatly facilitate Drosophila modeling of EE differentiation and function.


Subject(s)
Drosophila Proteins/metabolism , Intestinal Mucosa/cytology , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Drosophila , Drosophila Proteins/genetics , Enteroendocrine Cells , Eye Proteins/genetics , Eye Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Transcription Factors/genetics
18.
Sci Transl Med ; 11(488)2019 04 17.
Article in English | MEDLINE | ID: mdl-30996080

ABSTRACT

Recent studies have established the involvement of the fat mass and obesity-associated gene (FTO) in metabolic disorders such as obesity and diabetes. However, the precise molecular mechanism by which FTO regulates metabolism remains unknown. Here, we used a structure-based virtual screening of U.S. Food and Drug Administration-approved drugs to identify entacapone as a potential FTO inhibitor. Using structural and biochemical studies, we showed that entacapone directly bound to FTO and inhibited FTO activity in vitro. Furthermore, entacapone administration reduced body weight and lowered fasting blood glucose concentrations in diet-induced obese mice. We identified the transcription factor forkhead box protein O1 (FOXO1) mRNA as a direct substrate of FTO, and demonstrated that entacapone elicited its effects on gluconeogenesis in the liver and thermogenesis in adipose tissues in mice by acting on an FTO-FOXO1 regulatory axis.


Subject(s)
Catechol O-Methyltransferase/metabolism , Catechols/pharmacology , Forkhead Box Protein O1/metabolism , Nitriles/pharmacology , RNA, Messenger/metabolism , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Body Weight/physiology , Catechol O-Methyltransferase/genetics , Enzyme Inhibitors/pharmacology , Forkhead Box Protein O1/genetics , Humans , Mice , RNA, Messenger/genetics , Thermogenesis/drug effects , Thermogenesis/genetics , Thermogenesis/physiology
19.
Stem Cell Reports ; 12(5): 1007-1023, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30982741

ABSTRACT

Intestinal stem cell (ISC) differentiation in the Drosophila midgut requires Delta/Notch-mediated lateral inhibition, which separates the fate of ISCs from differentiating enteroblasts (EBs). Although a canonical Notch signaling cascade is involved in the lateral inhibition, its regulation at the transcriptional level is still unclear. Here we show that the establishment of lateral inhibition between ISC-EB requires two evolutionarily conserved transcriptional co-repressors Groucho (Gro) and C-terminal binding protein (CtBP) that act differently. Gro functions in EBs with E(spl)-C proteins to suppress Delta expression, inhibit cell-cycle re-entry, and promote cell differentiation, whereas CtBP functions specifically in ISCs to mediate transcriptional repression of Su(H) targets and maintain ISC fate. Interestingly, several E(spl)-C genes are also expressed in ISCs that cooperate with Gro to inhibit cell proliferation. Collectively, our study demonstrates separable and cell-type-specific functions of Gro and CtBP in a lateral inhibition process that controls the proliferation and differentiation of tissue stem cells.


Subject(s)
Alcohol Oxidoreductases/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Drosophila melanogaster/genetics , Receptors, Notch/genetics , Repressor Proteins/genetics , Stem Cells/metabolism , Alcohol Oxidoreductases/metabolism , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Division/genetics , Cell Proliferation/genetics , DNA-Binding Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Gene Expression Regulation, Developmental , Intestines/cytology , RNA Interference , Receptors, Notch/metabolism , Repressor Proteins/metabolism , Signal Transduction/genetics , Stem Cells/cytology
20.
Elife ; 82019 01 16.
Article in English | MEDLINE | ID: mdl-30648969

ABSTRACT

Heterochromatin Protein 1 (HP1) is a conserved chromosomal protein in eukaryotic cells that has a major role in directing heterochromatin formation, a process that requires co-transcriptional gene silencing mediated by small RNAs and their associated argonaute proteins. Heterochromatin formation requires erasing the active epigenetic mark, such as H3K4me2, but the molecular link between HP1 and H3K4 demethylation remains unclear. In a fertility screen in female Drosophila, we identified ovaries absent (ova), which functions in the stem cell niche, downstream of Piwi, to support germline stem cell differentiation. Moreover, ova acts as a suppressor of position effect variegation, and is required for silencing telomeric transposons in the germline. Biochemically, Ova acts to link the H3K4 demethylase dLsd1 to HP1a for local histone modifications. Therefore, our study provides a molecular connection between HP1a and local H3K4 demethylation during HP1a-mediated gene silencing that is required for ovary development, transposon silencing, and heterochromatin formation. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Gene Silencing , Heterochromatin/metabolism , Histones/metabolism , Lysine/metabolism , Oxidoreductases, N-Demethylating/metabolism , Transcription Factors, General/metabolism , Animals , Chromobox Protein Homolog 5 , Demethylation , Female , Germ Cells/cytology , Ovary/growth & development , Ovary/metabolism , Protein Binding , Stem Cells/cytology , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...