Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 19(34): e2301639, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37093197

ABSTRACT

Two-dimensional low-melting-point (LMP) metal nanocrystals are attracting increasing attention with broad and irreplaceable applications due to their unique surface and topological structures. However, the chemical synthesis, especially the fine control over the nucleation (reduction) and growth (crystallization), of such LMP metal nanocrystals remains elusive as limited by the challenges of low standard redox potential, low melting point, poor crystalline symmetry, etc. Here, a controllable reduction-melting-crystallization (RMC) protocol to synthesize free-standing and surfactant-free bismuth nanocrystals with tunable dimensions, morphologies, and surface structures is presented. Especially, ultrathin bismuth nanosheets with flat or jagged surfaces/edges can be prepared with high selectivity. The jagged bismuth nanosheets, with abundant surface steps and defects, exhibit boosted electrocatalytic CO2 reduction performances in acidic, neutral, and alkaline aqueous solutions, achieving the maximum selectivity of near unity at the current density of 210 mA cm-2 for formate evolution under ambient conditions. This work creates the RMC pathway for the synthesis of free-standing two-dimensional LMP metal nanomaterials and may find broader applicability in more interdisciplinary applications.

2.
ACS Appl Mater Interfaces ; 15(16): 20317-20324, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37057844

ABSTRACT

Electrochemical CO2 reduction reaction (CO2RR), which uses renewable electricity to produce high-value-added chemicals, offers an alternative clean path to the carbon cycle. However, bismuth-based catalysts show great potential for the conversion of CO2 and water to formate, but their overall efficiency is still hampered by the weak CO2 adsorption, low electrical conductivity, and slow mass transfer of CO2 molecules. Herein, we report that a rationally modulated nitrogen-doped graphene aerogel matrix (NGA) can significantly enhance the CO2RR performance of bismuth nanoplates (BiNPs) by both modulating the electronic structure of bismuth and regulating the interface for chemical reaction and mass transfer environments. In particular, the NGA prepared by reducing graphene oxide (GO) with hydrazine hydrate (denoted as NGAhdrz) exhibits significantly enhanced strong metal-support interaction (SMSI), increased specific surface area, strengthened CO2 adsorption, and modulated wettability. As a result, the Bi/NGAhdrz exhibits significantly boosted CO2RR properties, with a Faradaic efficiency (FE) of 96.4% at a current density of 51.4 mA cm-2 for formate evolution at a potential of -1.0 V versus reversible hydrogen electrode (vs RHE) in aqueous solution under ambient conditions.

3.
Chem Asian J ; 18(9): e202300110, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36935350

ABSTRACT

CO2 reduction reactions (CO2 RR) powered by renewable electricity can directly convert CO2 to hydrocarbons and fix the sustainable but intermittent energy (e. g., sunlight, wind, etc.) in stable and portable chemical fuels. Advanced catalysts boosting CO2 RR with high activity, selectivity, and durability at low overpotentials are of great importance but still elusive. Here, we report that the ultrathin Pd-Ag dendritic nanoplates (PdAg DNPs) exhibited boosted activity, selectivity, and stability for producing formate from CO2 at a very low overpotential in aqueous solutions under ambient conditions. As a result, the PdAg DNPs exhibited a Faradaic efficiency (FE) for formate of 91% and a cathodic energy efficiency (EE) of ∼90% at the potential of -0.2 V versus reversible hydrogen electrode (vs. RHE), showing significantly enhanced durability as compared with pure Pd catalysts. Our strategy represents a rational catalyst design by engineering the surface geometrical and electronic structures of metal nanocrystals and may find more applicability in future electrocatalysis.

4.
ChemSusChem ; 15(10): e202200211, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35266642

ABSTRACT

The electrocatalytic properties of metal nanoparticles (NPs) strongly depend on their compositions and structures. Rational design of alloys and/or heterostructures provides additional approaches to modifying their surface geometric and electronic structures for optimized electrocatalytic performance. Here, a solution synthesis of freestanding intermetallic Au2 Bi NPs, the heterostructures of Au2 Bi/Bi hetero-NPs, and their promoted electrocatalytic CO2 reduction reaction (CO2 RR) performances were reported. It was revealed that the formation and in-situ conversion of heterogeneous seeds (e. g., Au) were of vital importance for the formation of intermetallic Au2 Bi and Au2 Bi/Bi hetero-NPs. It was also found that the Au components would act as the structure promoter moderating the binding strength for key intermediates on Bi surfaces. The alloying of Bi with Au and the formation of heterogeneous Au2 Bi/Bi interfaces would create more surface active sites with modulated electronic structures and stronger adsorption strengths for key intermediates, promoting the CO2 -to-HCOOH conversion with high activity and selectivity. This work presents a novel route for preparing intermetallic nanomaterials with modulated surface geometric/electric structures and promoting their electrocatalytic activities with alloying effects and interfacial effects. Such strategy may find wide application in catalyst design and synthesis for more electrocatalytic reactions.

5.
Nanoscale ; 13(47): 20091-20097, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34846444

ABSTRACT

The catalytic performances of metal nanoparticles can be widely tuned and promoted by the metal-support interactions. Here, we report that the morphologies and electrocatalytic CO2 reduction reaction (CO2RR) properties of bismuth nanoparticles (BiNPs) can be rationally modulated by their interactions with carbon black (CB) supports by controlling the degree of surface oxidation. Appropriately oxidized CB supports can provide sufficient oxygen-containing groups for anchoring BiNPs with tunable sizes and surface areas, desirable key intermediate adsorption abilities, appropriate surface wettability, and adequate electron transfer abilities. As a result, the optimized Bi/CB catalysts exhibited a promoted CO2RR performance with a Faradaic efficiency of 94% and a current density of 16.7 mA cm-2 for HCOO- at -0.9 V versus a reversible hydrogen electrode. Our results demonstrate the significance of regulating the interactions between supports and metal nanoparticles for both synthesis of the catalyst and electrolysis applications, which may find broader applicability in more electrocatalyst designs.

SELECTION OF CITATIONS
SEARCH DETAIL
...